期刊文献+

基于曲率差分的自适应全变分去噪算法 被引量:4

Adaptive total variation denoising algorithm based on curvature differential
下载PDF
导出
摘要 针对整体变分(TV)修复模型易受到梯度的影响而且常常会丢失图像细节信息的缺点,提出了一种基于曲率差分的自适应全变分去噪算法。在联合非线性各向异性扩散滤波器和冲击滤波器对含噪图像做预处理的基础上,通过自适应方式调节正则项和保真项的权重系数,该算法能同时兼顾边缘保留和图像平滑去噪。仿真实验结果表明:与现有的去噪算法相比,该算法在不同强度的脉冲噪声下可以将峰值信噪比提升14%以上,同时将归一均方误差降低43%以上。 For Total Variation(TV)model vulnerable to gradient and regularly failing to capture image details, this paperproposes an adaptive total variation denoising algorithm based on curvature differential. On the basis of preprocessing thenoisy images with both nonlinear anisotropic diffusion filter and shock filter, the proposed algorithm can make a tradeoffbetween edge-preserving and noise-smoothing by adaptively adjusting the weights of the regular item and the fidelityitem. The experimental results show that compared with the existing denoising algorithms, the proposed new algorithmcan realize at least 14% increasement of peak signal to noise ratio, and at least 43% reduction of normalized mean squareerror under impulsive noise in different intensity.
作者 刘盈娣 周可法 王金林 周曙光 LIU Yingdi;ZHOU Kefa;WANG Jinlin;ZHOU Shuguang(Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Xinjiang Research Center for Mineral Resources,Urumqi 830011, China;University of Chinese Academy of Sciences, Beijing 100049, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第16期167-170,共4页 Computer Engineering and Applications
基金 新疆自治区重大专项(No.201330121-2) 西部博士基金项目(No.XBBS201107)
关键词 图像去噪 全变分模型 自适应 细节保护 image denoising total variation adaptive detail preserving
  • 相关文献

参考文献18

  • 1Ruikar S D,Doye D D.Wavelet based image denoisingtechnique[J].(IJACSA)International Journal of AdvancedComputer Science and Applications,2011,2(3).
  • 2Liu Feng,Liu Jingbo.Anisotropic diffusion for imagedenoising based on diffusion sensors[J].Visual Communicationand Image Representation,2012,23(3):515-521.
  • 3Gilboa G,Sochen N A,Zeevi Y Y.Estimation of optimalPDE-based denoising in the SNR sense[J].IEEE Transactionson Image Processing,2006,15(8):2269-2280.
  • 4Hintermüller M,Andreas L.Non-overlapping domain decompositionmethods for dual total variation based imagedenoising[J].Journal of Scientific Computing,2014:1-26.
  • 5Gilboa G,Zeevi Y Y,Sochen N.Texture preserving variationaldenoising using an adaptive fidelity term[C].2ndIEEE Workshop on Variational,Geometric and Level Methodsin Computer Vision,Nice,France,2003,3:137-144.
  • 6Liu Xinwu,Huang Lihong.A new nonlocal total variationregularization algorithm for image denoising[J].Mathematicsand Computers in Simulation,2014,97:224-233.
  • 7Chan T,Marquina A,Mulet P.High order total variationbasedimage restoration[J].SIAM Journal on ScientificComputing,2000,22(2):503-516.
  • 8陈小晴.基于偏微分方程的图像去噪方法研究[J].南京:南京信息工程大学,2013.
  • 9Alvarez L,Lions P L,Morel J M.Image selective smoothingand edge detection by nonlinear diffusion[J].SIAM Journalon Numerical Analysis,1992,29(3):845-866.
  • 10You Y L,Xu W,Tannenbaum A,et al.Behavioral analysisof anisotropic diffusion in image processing[J].IEEETransactions on Image Processing,1996,5(11).

同被引文献42

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部