期刊文献+

基于UWT和独立分量分析的含噪盲源分离 被引量:5

Noisy blind source separation based on undecimated wavelet transform and independent component analysis
下载PDF
导出
摘要 提出了基于UWT(非抽样小波变换)去噪与Fast ICA(快速独立分量分析)算法相结合的含噪盲源分离方法,采用先去噪后分离的方式实现了在加性高斯噪声环境下混合图像的盲分离。仿真结果表明,该方法能很好地从加性高斯噪声中分离出源图像,与曲波阈值去噪后的Fast ICA方法相比较,该方法能获得更好的峰值信噪比。 This paper proposes a method to realize noisy blind source separation based on UWT(Undecimated WaveletTransform)denoising and FastICA(Independent Component Analysis). The method employs a model of ICA after denoisingto implement noisy image separation under the environment of additive Gaussian noise. The simulation results show thatthe proposed method can separate noisy mixed images efficiently. Compared with the method based on curvelet denosingbefore ICA, the proposed method can obtain better performance of Peak Signal-to-Noise Ratio(PSNR).
作者 蔡伟华 何选森 CAI Weihua;HE Xuansen(College of Information Science and Engineering, Hunan University, Changsha 410082, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第16期180-185,共6页 Computer Engineering and Applications
关键词 盲源分离 非抽样小波变换(UWT) 快速独立分量分析 曲波变换 峰值信噪比 blind source separation Undecimated Wavelet Transform(UWT) Fast Independent Component Analysis (FastICA) curvelet transform Peak Signal-to-Noise Ratio(PSNR)
  • 相关文献

参考文献12

  • 1Comon P,Jutten C.Handbook of blind source separation:independent component analysis and applications[M].[S.l.]:Academic Press,2010.
  • 2Shukla M,Changlani S.A comparative study of w-aveletand curvelet transform for image denoising[J].IOSR Journalof Electronics and Communication Engineering,2013:63-68.
  • 3蔡政,陶少华.一种小波和脊波联合去噪方法[J].计算机工程与应用,2012,48(9):201-204. 被引量:9
  • 4Hongyan L,Jianfen M,Juanping W,et al.The blind separateonof noisy mixing image based on FASTICA andwavelet transform[C].First International Conference onCommunications and Networking in China.IEEE,2006:1-5.
  • 5张朝柱,张健沛,孙晓东.基于curvelet变换和独立分量分析的含噪盲源分离[J].计算机应用,2008,28(5):1208-1210. 被引量:10
  • 6Abbass M Y,Shehata S A,Haggag S S,et al.Blind separationof mixed sources with curvelet denoising[C].2013Proceedings of International Conference on Modelling,Identification & Control(ICMIC).IEEE,2013:227-231.
  • 7Starck J L,Fadili J,Murtagh F.The undecimated waveletdecomposition and its reconstruction[J].IEEE Transactionson Image Processing,2007,16(2):297-309.
  • 8Raj V N P,Venkateswarlu T.ECG signal denoising usingundecimated wavelet transform[C].2011 3rd InternationalConference on Electronics Computer Technology(ICECT),IEEE,2011,3:94-98.
  • 9Matsuyama E,Tsai D Y,Lee Y,et al.Comparision of adiscrete wavelet transform method and a modified undecimateddiscrete wavelet transform method for denoisingof mammograms[C].Engineering in Medicine and BiologySociety(EMBC),35th Annual International Conferenceof the IEEE.IEEE,2013:3403-3406.
  • 10Hyvarinen A.Fast and robust fixed-point algorithms forindependent component analysis[J].IEEE Transactions onNeural Networks,1999,10(3):626-634.

二级参考文献23

  • 1向前,林春生,程锦房.噪声背景下的盲源分离算法[J].数据采集与处理,2006,21(1):42-45. 被引量:5
  • 2项海林,贾建,焦李成.基于小波和脊波的图像联合去噪方法[J].系统工程与电子技术,2007,29(5):680-682. 被引量:4
  • 3谭兮,凌玉华,谭山.脊波框架的构造及其在图像去噪中的应用[J].电子技术应用,2007,33(7):58-60. 被引量:3
  • 4Chang S G,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Im-age Processing,2000,9(9):1532-1546.
  • 5Zhao Ruizhen,Liu Xiaoyu,Li Ching-Chung,et al.A new denoising method based on wavelet transform and sparse representation[C]//Yuan B Z,Ruan Q Q,Tang X F.9th International Conference on Signal Processing,Beijing,2008.New York:IEEE,2008:171-174.
  • 6Candes E J.Ridgelets:a key to higher dimensional intermitten-cy[J].Philosophical Transactions of the Royal Society of London,1999,A357(1760):2459-2509.
  • 7Kelley B T,Madisetti V K.The fast discrete radon transform-I:theory[J].IEEE Transactions on Image Processing,1993,2(3):382-400.
  • 8Starck J L,Candes E J,Donoho D L.The curvelet transform for image denoising[J].IEEE Transactions on Image Processing,2002,11(6):670-684.
  • 9Do M N,Vetterli M.The finite ridgelet transform for image rep-resentation[J].IEEE Transactions on Image Processing,2003,12(1):16-28.
  • 10Liu Yunxia,Peng Yuhua,Siu Wan-Chi.Energy-based adaptive trans-form scheme in the DPRT domain and its application to image denoising[J].Signal Processing,2009,89(1):31-44.

共引文献16

同被引文献28

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部