期刊文献+

网络数据库访问中语义指向性算法优化 被引量:1

Optimization of semantic directivity algorithm for network database access
下载PDF
导出
摘要 为解决数据库从高维单词空间映射至低维隐含语义空间中,无法有效实现数据库访问语义指向性分析的问题,提出基于主题模型的数据库访问语义指向性算法,建立PLSA主体模型并对其进行求解,通过PLSA主题模型获取理想的潜在语义主题,在数据库访问关键词上分布以及文档在潜在语义主题上的分布,将其应用于数据库访问语义指向性分析中,针对数据库表现出来的文本特征和结构特征建立PLSA主题模型,通过自适应不对称学习算法对不同的PLSA主题模型进行集成和优化,以实现数据库访问语义指向性分析,使数据库访问结果更加准确。仿真实验结果表明所提算法具有很高的数据库访问效率及精度。 To solve the problem that the database is mapped from high?dimensional word space to low?dimensional impliedsemantic space,and can not effectively implement semantic directivity analysis of database access,the database access seman?tic directivity algorithm based on theme model is proposed,the PLSA subject model is established and is solved,by which theideal latent semantic theme is obtained. The key distribution on the database access and document distribution on latent seman?tic subject are applied to the database access semantic directivity analysis to set up PLSA theme model according to the text fea?ture and structure feature showed by database. The different theme PLSA models are integrated and optimized by adaptive asym?metry learning algorithm to realize the semantic directivity analysis for database access and make the database access resultsmore accurate. The simulation results show that the proposed algorithm has high database access efficiency and accuracy.
作者 张光勇 陈志伟 ZHANG Guangyong;CHEN Zhiwei(Network Information Center,Shandong University of Technology,Zibo 255049,China;School of Life Sciences,Shandong University of Technology,Zibo 255049,China)
出处 《现代电子技术》 北大核心 2016年第16期112-115,共4页 Modern Electronics Technique
基金 国家自然科学基金面上项目(31071538) 山东省科技厅大型科学仪器设备升级改造项目:基于数字信号处理技术(DSP)的大型仪器实时管理平台研究(2013SJGZ02)
关键词 PLSA主题模型 数据库访问 语义指向性算法 主题模型优化 PLSA theme model database access semantic directivity algorithm theme model optimization
  • 相关文献

参考文献6

二级参考文献56

  • 1张奇,黄萱菁,吴立德.一种新的句子相似度度量及其在文本自动摘要中的应用[J].中文信息学报,2005,19(2):93-99. 被引量:34
  • 2Bobick A,Davis J.The recognition of human movement using temporal templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23 (3):257-267.
  • 3Guo F,Qian G.Monocular 3D tracking of articulated human motion in silhouette and pose manifolds[J].Image and Video Processing,2008,2008(3):1-18.
  • 4Yamato J,Ohya J,Ishii K.Recognizing human action in timesequential images using hidden markov model[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1992:379-385.
  • 5Park S,Aggarwal J K.A hierarchical bayesian network for event recognition of human actions and interactions[J].Multimedia Systems,2004,10(2):164-179.
  • 6Dalal N,Triggs B.Histograms of oriented gradients for human detection[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:886-893.
  • 7Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation[J].Machine Learning Research,2003 (3):993-1022.
  • 8Laptev I,Lindeberg T.Space-time interest points[C] //Proceedings of the Ninth IEEE International Conference on Computer Vision,2003:432-439.
  • 9Thi T H,Cheng L,Zhang J,et al.Structured learning of local features for human action classification and localization[J].Image and Vision Computing,2012,30 (1):1-14.
  • 10Harris C,Stephens M.A combined comer and edge detector[C] //Alvey vision conference,1988:147-151.

共引文献28

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部