期刊文献+

来流作用下板表面声辐射频率的影响因素分析

Analysis of the Influencing Factors of Surface Acoustic Radiation of Plates under the Flow Action
下载PDF
导出
摘要 采用Ansys Workbench 15.0自带DM模块构建来流作用下的板模型,利用MESH模块划分网格,以及System Coupling模块进行流固耦合计算,验证数值模拟的可靠性,并对影响板表面声辐射频率的因素进行分析。数值模拟与分析结果表明,在来流作用下的板模型中,板表面声辐射主要由平行于来流方向的脉动压力产生,与壁面上垂直于来流方向的脉动压力、板后的大涡、板的固有频率无关;来流作用下板表面声辐射的基频与来流作用下板振动的基频、板后空腔的基频相同,是板后大涡基频的两倍;在大涡外且不在板后空腔的流场区域内,脉动压力无基频存在;在大涡模拟已经趋于统计稳定的情况下,FW-H与LES的非同步计算可以达到和同步计算一样的效果。 Abstract: The DM subroutine of Ansys Workbench 15.0 is applied to build the plate model under the flow action, the MESH pre-processing is used to generate the grid, and the System Coupling subroutine is utilized to analyze the fluid and structure interaction. The reliability of numerical simulation is verified. Then, the influencing factors of surface acoustic radiation of plates under the flow action are analyzed. Results of the numerical simulation and analysis show that in the plate model under the flow action, plate surface’s acoustic radiation is mainly caused by the impulsive pressure of the flow parallel to the plate surface, but is independent of the impulsive pressure of the flow vertical to the plate surface, the large eddy behind the plate and the natural frequencies of the plate. The fundamental frequency of the plate surface’s acoustic radiation is the same as that of the plate’s vibration induced by the flow action. And it is equal to the fundamental frequency of the cavity behind the plate, and twice of the fundamental frequency of the eddy behind the plate. There is no fundamental frequency of impulsive pressure in the flow field out of the eddy and the cavity. When the large eddy simulation results tend to statistically stable, the synchronous simulation and non-synchronous simulation of the FW-H and LES can yield the same results.
作者 石若瑜 熊鳌魁 SHI Ruo-yu;XIONG Ao-kui(School of Transportation, Wuhan University of Technology, Wuhan 430063, China)
出处 《噪声与振动控制》 CSCD 2016年第4期48-52,共5页 Noise and Vibration Control
关键词 声学 流固耦合 大涡模拟 湍流噪声 频率 acoustics fluid and structure interaction large eddy simulation turbulent noise frequency
  • 相关文献

参考文献9

  • 1张永坤,熊鹰,赵小龙.螺旋桨无空泡噪声预报[J].噪声与振动控制,2008,28(1):44-47. 被引量:15
  • 2邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38. 被引量:238
  • 3FLEIG OLIVER, ARAKAWA, CHUI CHI. Numericalsimulation of wind turbine tip noise[R]. Collection of the2004 ASME Wind Energy Symposium Technical Papers atthe 42nd AIAA Aerospace Sciences Meeting and Exhibit.Jan 5-8 2004.
  • 4FLEIG OLIVER, IIDA MAKOTO, SUZUKI MASAMI,etal. Wind turbine blade tip flow and noise predictionby large - eddy simulation. japan society of mechanicalengineers[C]. Tokyo, 160, Japan. January 2005: 177-183.
  • 5SCHAFER F, MULLER S, UFFINGER T, et al. Fluidstructure-acoustics interaction of the flow past a thinflexible structure[J]. AIAA, 2010, 48: 738-748.
  • 6王文全,张立翔,闫妍,郭亚昆.方柱绕流诱发的弹性薄板流固耦合特性研究[J].工程力学,2011,28(3):17-22. 被引量:6
  • 7LIGHTHILL M J. On sound generated aerodynamically IGeneral Theroy[C]. Proceedings of the Royal Society,1952, 211A(1107): 564-587.
  • 8CURLE N. The influence of solid boundaries uponaerodynamic[C]. Proceedings of the Royal Society ofLondon, 1995, 231A(1187): 505-514.
  • 9FFCOWS WILLIAMS J E, HAWKINGS D L. Soundgeneration by turbulence and surface in arbitrary motion[J]. Philosophical Transactions of the Royal Society,1969, 264A: 321-342.

二级参考文献90

  • 1温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展[J].力学进展,1995,25(1):60-76. 被引量:57
  • 2杨自丰,王晓宇,孙晓峰.有限长壁面处理对叶片气动弹性稳定性的影响[J].航空动力学报,2006,21(6):1027-1032. 被引量:2
  • 3张立翔,王文全,姚激.混流式水轮机转轮叶片流激振动分析[J].工程力学,2007,24(8):143-150. 被引量:28
  • 4Bungartz H J, Schafer M. Fluid-structure interaction: Modeling, simulation, optimization [M]. New York: Springer, 2006.
  • 5Kim Y H, Kim J E, Ito Y. Hemodynamics analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework [J]. Annals of Biomedical Engineering, 2008, 36(11): 1753 - 1763.
  • 6Dubini G, Pietrabissi R, Montevecchi F M. Fluidstructure interaction problems in bio-fluid mechanics: A numerical study of the motion of an isolated particle freely suspended in channel flow [J]. Medical Engineering & Physics, 1995, 17(8): 609-617.
  • 7Vierendeels J, Dumont K, Verdonck P R. A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics [J]. Journal of Computational and Applied Mathematics, 2008, 215(2): 602- 609.
  • 8Kennedy J M, Belytschko T. A survey of computational methods for fluid-structure analysis of reactor safety [J]. Nuclear Engineering and Design, 1982, 69: 379-398.
  • 9Thomas J P, Dowell E H, Hall K C. Nonlinear in viscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations [J]. AIAA Journal, 2002, 40(4): 638-646.
  • 10Breard C, Vahdati M. An Integrated time-domain aeroelasticity model for the prediction of fan forced response due to inlet distortion [J]. Transactions of the ASME, 2002, 124(1): 196-208.

共引文献256

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部