期刊文献+

工作参数对垂直管内R124/DMAC鼓泡吸收能力的影响 被引量:1

Effect of Working Parameters on the Bubble Absorption Capacity of R124/DMAC in a Vertical Tube
下载PDF
导出
摘要 通过搭建一套垂直管管内鼓泡吸收可视化实验平台,探究工作参数变化对以R124/DMAC为工质的管内鼓泡吸收过程流型变化及吸收高度的影响情况.吸收高度表征鼓泡吸收器的吸收能力,在相同的工作参数下,吸收高度越低表明鼓泡吸收器的吸收能力越强.实验结果表明,吸收高度与气、液体积流率,溶液入口温度、质量分数,喷嘴孔径,吸收压力及冷却效果均有关系.增加液体体积流率、吸收压力与增强冷却效果,降低溶液入口温度、质量分数及喷嘴孔径,均能降低鼓泡吸收高度,提高吸收器的吸收能力.经对实验数据进行多元线性回归处理,给出R124/DMAC鼓泡吸收高度的估算式,误差约为±20%,. By constructing a set of visualization experimental platform for bubble absorption in the vertical tube,theinfluence of the working parameter changes on flow pattern change and absorption height in absorption process wasexplored for using R124/DMAC as working fluid.The absorption height can represent the absorption capacity of thebubble absorber.Low absorption height means high absorption capacity under the same conditions.Experimentalresults show that the absorption height is related to the refrigerant vapor flow rate,absorption solution flow rate,andits inlet temperature and mass fraction,the nozzle orifice diameter,absorption pressure and cooling effect.By increasingthe solution flow rate and the absorption pressure,enhancing the cooling effect,decreasing the solutioninlet temperature and mass fraction and the nozzle orifice diameter,all bubble absorption heights can be reduced and theabsorption capacity of the absorber can be improved.By performing the multiple linear regression of experimental data,acorrelation equation for estimating the R124/DMAC bubble absorption height was given within±20%, error band.
作者 徐士鸣 蒋孟男 胡军勇 王伟 吴曦 Xu Shiming;Jiang Mengnan;Hu Junyong;Wang Wei;Wu Xi(School of Energy and Power,Dalian University of Technology,Dalian 116024,China)
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2016年第8期855-862,共8页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(51376032)
关键词 鼓泡吸收 可视化 R124/DMAC 垂直管 吸收高度 bubble absorption visualization R124/DMAC vertical tube absorption height
  • 相关文献

参考文献26

  • 1路明,徐士鸣.汽车尾气余热制冷循环特性[J].制冷技术,2010,30(4):10-13. 被引量:6
  • 2Borde I,Jelinek M,Daltrophe N C. Working fluids foran absorption system based on R124(2-chloro-1,1,1 , 2-tetrafluoroethane) and organic absorbents[J].International Journal of Refrigeration,1997,20 (4):256-266.
  • 3Arun M B,Maiya M P,Murthy S S. Optimalperformance of double-effect series flow vapourabsorption refrigeration systems with new working fluids[J]. International Journal of Energy Research,1998,22(11):1001-1017.
  • 4李见波,徐士鸣,刘福森.车速变化对吸收/压缩混合制冷循环的影响[J].吉林大学学报(工学版),2013,43(2):291-297. 被引量:4
  • 5徐士鸣,刘福森,李见波.废热/动力联合驱动的混合制冷循环特性分析[J].热科学与技术,2012,11(2):148-155. 被引量:4
  • 6Li Jianbo,Xu Shiming. The performance of absorptioncompressionhybrid refrigeration driven by waste heatand power from coach engine[J]. Applied ThermalEngineering,2013,61(2):747-755.
  • 7Jelinek M,Levy A,Borde I. The performance of atriple pressure level absorption cycle(TPLAC) withworking fluids based on the absorbent DMEU and therefrigerants R22,R32,R124,R125,R134a andR152a[J]. Applied Thermal Engineering , 2008 ,28(11/12):1551-1555.
  • 8Xu Shiming,Li Jianbo,Liu Fusen. An investigation onthe absorption-compression hybrid refrigeration cycledriven by gases and power from vehicle engines[J].International Journal of Energy Research,2013,37(12):1428-1439.
  • 9Castro J,Oliet C,Rodríguez I,et al. Comparison ofthe performance of falling film and bubble absorbers forair-cooled absorption systems[J]. International Journalof Thermal Sciences,2009,48(7):1355-1366.
  • 10Yong T K , Atsushi A , Takao K. Analyticalinvestigation of two different absorption modes:Fallingfilm and bubble types[J]. International Journal ofRefrigeration,2000,23(6):430-443.

二级参考文献75

  • 1马友光,余国琮,何明霞.多组分相际传质近界面浓度场的测定[J].化工学报,1994,45(5):636-641. 被引量:20
  • 2曹磊.全球十大环境问题[J].环境科学,1995,16(4):86-88. 被引量:30
  • 3马友光,白鹏,余国琮.气液传质理论研究进展[J].化学工程,1996,24(6):7-11. 被引量:24
  • 4徐士鸣,袁一.氨水吸收式制冷循环的分析与改进[J].大连理工大学学报,1996,36(4):445-450. 被引量:19
  • 5刘合心,舒水明,胡中元.实用型载货汽车空调器[J].流体机械,2007,35(3):76-79. 被引量:3
  • 6Kang Y T, Akisawa A, Kashiwagi T. Analytical investigation of two different absorption modes: falling film and bubble types. Int. J. Refrig. , 2000, 23 ( 6 ): 430-43.
  • 7Infante Ferreira C A, Keizer C, Machielsen C M M. Heat and mass transfer in vertical tubular bubble absorbers for ammonia-water absorption refrigeration systems. Int. J.Refrig., 1984, 7 (6): 348-357.
  • 8Herbine G S, Perez-Blanco H. Model of an ammonia water bubble absorber. ASHRAE Transactions. 1995, 101 (6):1321-1332.
  • 9Merrill T L, Perez Blanco H. Combined heat and mass transfer during bubble absorption in binary solutions. International Journal of Heat and ,Mass Transfer, 1997, 40 (3): 589-603.
  • 10Ferndndez Seara J, Sieres J, Rodriguez C. Vazquez M. Ammonia water absorption in vertical tubular absorbers. Int. J. Therm. Sci., 2005, 44 (3): 277-288.

共引文献28

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部