摘要
基于BP神经网络算法建立水资源评估数学模型。首先获得大量相关的评估指标,通过主成分分析法(PCA)剔除不重要指标。对于指标赋权,先用基于蒙特卡罗的层次分析法(AHP-MCA)初步给指标赋权,由于此法具有一定主观性,因此进一步采用BP神经网络算法对所赋权重进行训练调节,过程中需要一个标准比对物,最终得到符合实际情况的权重因子。在建立预测数学模型前,针对可能的突变输入数据,采用低通滤波器将突变高频数据过滤,增加模型适用性,最后通过灰色模型GM(1,1)建立预测模型。
To build an evaluation mathematical model for water resources,original evaluation indicators were selected,unimportant indicators by Principal Component Analysis(PCA)were eliminated and ultimately independent and importantindicators were obtained,which actually carry all information of the original indicators.Then the Analytic Hierarchy Processbased on Monte Carlo Algorithm(AHP-MCA)was used to preliminarily give weights.As this method is subjective,it isnecessary to adjust the weights by Back Propagation Arithmetic(BP).Ultimately,reasonable and real weights were obtained.Before building the prediction model,Low-pass Filter was used to filer abnormal data,which will add adaptabilityof the model.Finally,the prediction model was established by Grey Model GM(1,1) .
作者
林炯
余伟江
余伟浩
LIN Jiong;YU Weijiang;YU Weihao(School of Physics and Communication Engineering,South China Normal University,Guangzhou 510006,Guangdong Province,China;School of Information and Optoelectronic Science and Engineering,South China Normal University,Guangzhou 510006,Guangdong Province,China)
出处
《天津科技》
2016年第8期29-32,共4页
Tianjin Science & Technology
关键词
数学模型
BP神经网络
权重
低通滤波
灰色模型
mathematical model
Back Propagation Arithmetic
weight
low-pass filter
grey model