期刊文献+

采用碰撞测试和回归机制的非完整约束机器人快速扩展随机树运动规划 被引量:10

Rapidly-exploring random trees motion planning for non-holonomic robot with collision-test and regression mechanism
下载PDF
导出
摘要 本文提出一种改进的快速扩展随机树(rapidly-exploring random trees,RRT)运动规划方法,用于非完整微分约束下的机器人运动规划.针对类似目标偏好与双向RRT(bi-directional RRT,bi-RRT)等目标区域导向的RRT运动规划所存在的局部极小问题,结合回归检测与碰撞检测机制,设计了一种碰撞检测与回归机制(collision-test and regression mechanism,CR)机制.该方法使得机器人在规划过程中能获取到全局障碍物信息,从而避免对已扩展节点的重复搜索,以及重复对边缘节点的回归测试和避障检测.该机制使得机器人可加快跳出局部极小区域,提高运动规划实的时性.将改进的RRT运动算法在容易产生局部极小值的环境中仿真测试,结果表明该算法在不显著影响其他性能的前提下,可以明显提高规划的实时性. An improved rapidly-exploring random trees (RRT) algorithm is proposed to deal with the motion planning for non-holonomic mobile robots. The RRT algorithms using a bias towards the goal while choosing a random configuration,that will leads to the problem of local minima. Therefore, a novel method called collision-test and regression mechanism (CR) mechanism is presented, in which the collision detection mechanism and the regression testing mechanism are combined to enable the robot to escape from the local minima.The CR mechanism takes the global constraints into consideration, avoids exploring the directions which have been explored repeatedly.The repeatedly regression testing and detection for obstacle avoidance to the edge nodes are prevented in the CR.The ultimate goal of the algorithm is to improve the real-time performance of the planner, especially in the environment with highly-constraints. Simulation results of several improved RRT algorithms in the environment which is apt to generate local minima problems, verifies the proposed algorithm can improve the real-time performance significantly without obviously negative influences.
作者 张波涛 李加东 刘士荣 ZHANG Bo-tao;LI Jia-dong;LIU Shi-rong(Institute of Automation, Hangzhou Dianzi University, Hangzhou Zhejiang 310018, China;Institute of Automation, East China University of Science and Technology, Shanghai 200237, China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第7期870-878,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61503108 61175093) 浙江省自然科学基金项目(LQ14F030012)资助~~
关键词 机器人学 运动规划 非完整约束 RRT算法 robotics motion planning non-holonomic constraint RRT algorithm
  • 相关文献

参考文献3

二级参考文献24

  • 1张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 2樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用,2005,22(5):703-707. 被引量:40
  • 3刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:74
  • 4Kuwata Y, Teo J, Fiore G, et al. Real-time motion planning withapplications to autonomous urban driving[J]. IEEE Transactionson Control Systems Technology, 2009,17(5): 1105-1118.
  • 5Fraichard T, Scheuer A. From Reeds and Shepp’s to continuous-curvature paths [J]. IEEE Transactions on Robotics, 2004,20(6):1025-1035.
  • 6Elbanhawi M, Simic M. Randomised kinodynamic motion plan-ning for an autonomous vehicle in semi-structured agriculturalareas[J]. Biosystems Engineering, 2014, 126: 30-44.
  • 7Elbanhawi M, Simic M, Jazar R. Continuous-curvature bound-ed trajectory planning using parametric splines[M]//Frontiers inArtificial Intelligence and Applications, vol.262. Amsterdam,Netherlands: IOS Press, 2014: 513-522.
  • 8Gomez-Bravo F, Cuesta F, Ollero A, et al. Continuous curva-ture path generation based on /3-spline curves for parking ma-noeuvres[J]. Robotics and Autonomous Systems, 2008, 56(4):360-372.
  • 9Du M B, Chen J J, Zhao P, et al. An improved RRT-basedmotion planner for autonomous vehicle in cluttered environ-ments [C]//IEEE International Conference on Robotics and Au-tomation. Piscataway, USA: IEEE, 2014: 4674-4679.
  • 10Lee J, Kwon O, Zhang L, et al. SR-RRT: Selective retraction-based RRT planner[C]//IEEE International Conference onRobotics and Automation. Piscataway, USA: IEEE, 2012:2543-2550.

共引文献177

同被引文献67

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部