期刊文献+

融合特征排序的多标记特征选择算法 被引量:3

Multi-label feature selection via fusing feature ranking
下载PDF
导出
摘要 在多标记学习框架中,特征选择是解决维数灾难,提高多标记分类器的有效手段。提出了一种融合特征排序的多标记特征选择算法。该算法首先在各标记下进行自适应的粒化样本,以此来构造特征与类别标记之间的邻域互信息。其次,对得到邻域互信息进行排序,使得每个类别标记下均能得到一组特征排序。最后,多个独立的特征排序经过聚类融合成一组新的特征排序。在4个多标记数据集和4个评价指标上的实验结果表明,所提算法优于一些当前流行的多标记降维方法。 In the framework of multi-label learning, feature selection is a powerful tool for solving the curse of dimensionality,which can improve the classification performance of multi-label classifier. In this paper, a multi-label feature selection algorithm via fusing feature ranking is proposed. First, it conducts adaptive graining samples based on different labels and employs the neighborhood of sample to compute the neighborhood mutual information between feature and label,which can measure the importance degree of feature. Then, all features are sorted in descending order by the value of their neighborhood mutual information under each label. Finally, it acquires a new feature rank by fusing all individual feature rank lists. Experiment is conducted on four data sets, and four evaluation criteria are used to measure the effectiveness. Experimental results show that the proposed algorithm is superior to several state-of-the-art multi-label feature selection algorithms.
作者 王晨曦 林梦雷 刘景华 王娟 林耀进 WANG Chenxi;LIN Menglei;LIU Jinghua;WANG Juan;LIN Yaojin2(Department of Computer Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 363000, China;School of Computer Science, Minnan Normal University, Zhangzhou, Fujian 363000, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第17期93-100,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61303131 No.61379021) 福建省自然科学基金(No.2013J01028) 福建省高校杰出青年科研人才培育计划(No.JA14192) 漳州市科技项目(No.ZZ2013J04 No.ZZ2014J14)
关键词 特征选择 多标记分类 聚类融合 互信息 feature selection multi-label classification clustering ensemble mutual information
  • 相关文献

参考文献20

  • 1Zhang M,Zhou Z.A review on multi-label learning algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837.
  • 2张振海,李士宁,李志刚,陈昊.一类基于信息熵的多标签特征选择算法[J].计算机研究与发展,2013,50(6):1177-1184. 被引量:62
  • 3Sun L,Ji S,Ye J.Multi-label dimensionality reduction[M].Boca Raton,FL:CRC Press,2013:20-22.
  • 4Hotelling H.Relations between two sets of variates[J].Biometrika,1936:321-377.
  • 5Yu K,Yu S,Tresp V.Multi-label informed latent semanticindexing[C].Proceedings of the 28th Annual InternationalACM SIGIR Conference on Research and Developmentin Information Retrieval.New York,NY:ACM,2005:258-265.
  • 6Zhang Y,Zhou Z.Multi-Label dimensionality reductionvia dependence maximization[J].Transactions on KnowledgeDiscovery from Data,2010,4(3):21-41.
  • 7Zhang L,Hu Q,Duan J,et al.Multi-label feature selectionwith fuzzy rough sets[M].Rough sets and knowledge technology.[S.l.]:Springer International Publishing, 2014:121-128.
  • 8Spolaor N,Cherman E,Monard M.Using ReliefF for multilabelfeature selection[C].Conferencia Latinoamericana deInformatica,2011:960-975.
  • 9Spolaor N,Cherman E,Monard M,et al.Filter approachfeature selection methods to support multi-label learningbased on ReliefF and information gain[M].Advances inartificial intelligence-SBIA 2012.Berlin/Heidelberg:Springer,2012:72-81.
  • 10Lee J,Kim D W.Feature selection for multi-label classificationusing multivariate mutual information[J].PatternRecognition Letters,2013,34(3):349-357.

二级参考文献21

  • 1Tsoumakas G, Katakis I, Vlahavas I. Data Mining and Knowledge Discovery Handbook [M]. Berlin: Springer, 2010:667-685.
  • 2Zhang Y, Zhou Z H. Multi label dimensionality reduction via dependence maximization [C] // Proe of the 2Srd AAAI Conf on Artificial Intelligence and the 20th Innovative Applications of Artificial Intelligence Conference. Menlo Park~ American Association for Artificial Intelligence, 2008: 150:3-1505.
  • 3Li G Z, You M, Ge L, et al. Feature selection for semi- supervised multi label learning with application to gene function analysis [C] // Proc of the 2010 ACM Int Conf on Bioinformatics and Computational Biology. New York: Association for Computing Machinery, 2010:354-357.
  • 4You M Y, Liu J M, Li G Z, et al. Embedded feature selection for multi-label classification of music emotions [J]. International Journal of Computational Intelligence Systems, 2012, 5(4): 668-678.
  • 5Shao H. H G. l.iu G, et al. lahel data of inquiry diagnosis Symptom selection for multi n traditional Chinese medicioe [J]. Science China Information Sciences, 2012, 54(1): 1-13.
  • 6Lee J, I.im H, Kim D W. Approximating mutual information for multi label feature selection [J].Electronics Le'tters, 2012, 48(15): 929-930.
  • 7Zhang M I., Pena J M, Rohles V. Feature selection for muhi-lahel naive Bayes classification [J].Information Seienees, 2009, 179( 19): 3218-3229.
  • 8Park C H, Lee M.On applying linear discriminant analysis for multi-labeled problems [J]. Pattern Recognition I.etters, 2008, 29(7) : 878-887.
  • 9Yu K. Yu S, Tresp V. Multi label informed latent semantic indexing[C]/ Proc of the 28th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2005:258-265.
  • 10Ji S, Ye J. Linear dimensionality reduction for multi label classification [C] // Proe of the 21st Int Joint Conf on Artifieial Intelligence. San Francisco: Morgan Kaufmann, 2009:1077-1082.

共引文献61

同被引文献10

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部