期刊文献+

基于压缩感知改进算法的MIMO-OFDM稀疏信道估计 被引量:8

Sparse channel estimation based on modified algorithm for MIMO-OFDM systems
下载PDF
导出
摘要 结合压缩感知理论(CS),针对压缩采样匹配追踪算法在多输入多输出正交频分复用(MIMO_OFDM)系统信道估计应用中需要利用信号稀疏度的先验条件,而实际中稀疏度又难获得的情况,提出一种信号稀疏度自适应的压缩采样改进匹配追踪算法(Co MSa MP)。该算法采用具有理论支撑的原子弱选择标准作为预选方案,并设置首次裁剪阈值来减少算法多余的迭代,降低算法在信道估计中的复杂度,裁剪方式的改进保证了重构精度的提高,最终实现MIMO-OFDM稀疏信道估计中信号的稀疏度自适应。仿真结果表明:与原算法相比,该算法在同等信噪比条件下具有更优的信道估计性能,从而提高了频谱利用率,同时降低了复杂度,在稀疏度较高时,提出的算法具有更好的对噪声的抗干扰能力。 In combination of CS theory, the compressing sampling matching pursuit algorithm for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing(MIMO_OFDM)system channel estimation requires the signal sparsity as a priori information, while in actual situation the sparsity is difficult to obtain, for this question it proposes a signal sparsity adaptive Compressive Modifying Sampling Matching Pursuit algorithm(CoMSaMP). The algorithm adopts the atomic weak selection criteria with theoretical support as a pre-selection scheme, and sets the first clipping threshold to reduce the algorithm extra iteration, then reduces the computational complexity, the improve of crop mode on channel estimation ensures the improvement of the reconstruction accuracy, and ultimately realizes adaptive recovery on MIMO-OFDM sparse channel estimation . Simulation results show that, compared with the original algorithm, under the same SNR conditions,the CoMSaMP algorithm has better performance on channel estimation, improves the spectral efficiency, reduces the complexity. When the sparsity level is high, the proposed algorithm has the better performance than the CoSaMP algorithm on anti-interference ability.
作者 任晓奎 葛君 孙兴海 REN Xiaokui;GE Jun;SUN Xinghai(School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第17期112-117,共6页 Computer Engineering and Applications
关键词 压缩感知 正交频分复用 稀疏信道估计 压缩采样匹配追踪 compressed sensing Orthogonal Frequency Division Multiplexing(OFDM) sparse channel estimation Compressive Sampling Matching Pursuit(CoSaMP)
  • 相关文献

参考文献16

  • 1Zhou Y,Wang J,Sawahashi M.Downlink transmissionof broadband OFCDM systems—part I:hybrid detection[J].IEEE Transactions on Communications,2005,53(4):718-729.
  • 2Barhumi I,Leus G,Moonen M.Optimal training designfor MIMO OFDM systems in mobile wireless channels[J].IEEE Transactions on Signal Processing,2003,51(6):1615-1624.
  • 3Maaref A,Aissa S.Impact of spatial fading correlationand keyhole on the capacity of MIMO systems withtransmitter and receiver CSI[J].IEEE Transactions on WirelessCommunications,2008,7(8):3218-3229.
  • 4Li Weichang,Preisig J C.Estimation of rapidly time-varyingsparse channel[J].IEEE J Ocean Eng,2007,32(4):927-939.
  • 5Donoho D L.Compressed sensing[J].IEEE Transactions onInformation Theory,2006,52(4):1289-1306.
  • 6Candes E J.Compressive sampling[C].Proceedings of theInternational Congress of Mathematics.Madrid,Spain:theEuropean Mathematical Society,2006:1433-1452.
  • 7石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 8方红,杨海蓉.贪婪算法与压缩感知理论[J].自动化学报,2011,37(12):1413-1421. 被引量:101
  • 9何雪云,宋荣方,周克琴.基于压缩感知的OFDM系统稀疏信道估计新方法研究[J].南京邮电大学学报(自然科学版),2010,30(2):60-65. 被引量:51
  • 10Qi Chenhao,Wu Lenan.A hybrid compressing sensingalgorithm for sparse channel estimation in MIMO OFDMsystems[J].IEEE Transactions on Signal Processing,2011,58(1):3488-3491.

二级参考文献123

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2王甫莉,阔永红,陈健,刘献玲.MIMO-OFDM系统信道估计算法综述[J].电子科技,2007,20(2):73-75. 被引量:11
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献847

同被引文献29

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部