期刊文献+

微泡对高强度聚焦超声声压场影响的仿真研究 被引量:2

The simulation study of the effect of microbubbles on high intensity focused ultrasound acoustic pressure field
下载PDF
导出
摘要 微泡对高强度聚焦超声(HIFU)治疗焦域具有增效作用,而HIFU治疗中不同声学条件下微泡对HIFU形成声压场的影响尚不清楚。本文基于气液混合声波传播方程、Keller气泡运动方程、时域有限差分(FDTD)法和龙格-库塔(RK)法数值仿真研究输入声压、激励频率、气泡初始空隙率和气泡初始半径对HIFU形成声压场的影响。研究结果表明,随着输入声压的增大,焦点处声压升高但焦点处最大声压与输入声压的比值减小,焦点位置几乎不变;随着激励频率和气泡初始半径的增大,焦点处声压升高且焦点位置向远离换能器方向移动;随着气泡初始空隙率的增大,焦点处声压降低且焦点位置向换能器方向移动。 The synergy effect of microbubbles was used to enhance HIFU treatment focal region. However, theeffect of microbubbles on HIFU acoustic pressure field in different acoustic conditions during HIFU therapy isnot clear. In this paper, the effect of input acoustic pressure, exciting frequency, initial bubble void fraction andinitial bubble radius on the acoustic pressure field of HIFU was discussed based on the gas-liquid mixing acousticpropagation equation, Keller bubble motion equation, the finite difference time domain (FDTD) method andRunge-Kutta (RK) method. The results show that, as the input acoustic pressure increasing, the acousticpressure at focus increases but the ratio of maximum acoustic pressure at focus to input acoustic pressuredecreases, the focus position is almost constant. As the exciting frequency and the initial bubble radiusincreasing, the acoustic pressure at focus increases and the focus moves away from the transducer side. Asthe initial bubble void fraction increasing, the acoustic pressure at focus decreases and the focus moves to thetransducer side.
作者 喻波涛 常诗卉 曾苗苗 陶敏慧 菅喜岐 YU Botao;CHANG Shihui;ZENG Miaomiao;TAO Minhui;JIAN Xiqi(Department of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China)
出处 《应用声学》 CSCD 北大核心 2016年第5期417-425,共9页 Journal of Applied Acoustics
基金 国家自然科学基金项目(81272495)
关键词 高强度聚焦超声 微泡 空化 空隙率 数值仿真 High-intensity focused ultrasound Microbubble Cavitation Void fraction Numerical simulation
  • 相关文献

参考文献20

  • 1KENNEDY J E. High-intensity focused ultrasound in thetreatment of solid tumours[J]. Nat. Rev. Cancer, 2005,5(4): 321–327.
  • 2GOTO K, TAKAGI R, MIYASHITA T, et al. Effect ofcontrolled offset of focal position in cavitation-enhancedhigh-intensity focused ultrasound treatment[J]. Jpn. J.Appl. Phys., 2015, 54(7S1): 07HF12.
  • 3COUSSIOS C C, ROY R A. Applications of acoustics and cavitation to noninvasive therapy and drug delivery[J].Annu. Rev. Fluid Mech., 2008, 40: 395–420.
  • 4TAMURA Y, TSURUMI N, MATSUMOTO Y. Numericalsimulation of cavitation in ultrasound field[C].10th InternationalSymposium on Therapeutic Ultrasound (ISTU2010). AIP Publishing, 2011, 1359(1): 431–436.
  • 5OKITA K, SUGIYAMA K, TAKAGI S, et al. Microbubblebehavior in an ultrasound field for high intensityfocused ultrasound therapy enhancement[J]. The Journalof the Acoustical Society of America, 2013, 134(2):1576–1585.
  • 6YEE K S, CHEN J S. The finite-difference time-domain(FDTD) and the finite-volume time-domain (FVTD)methods in solving Maxwell’s equations[J]. IEEE Trans.Antennas Propag., 1997, 45(3): 354–363.
  • 7NORTON G V, NOVARINI J C. Including dispersion andattenuation directly in the time domain for wave propagationin isotropic media[J]. The Journal of the AcousticalSociety of America, 2003, 113(6): 3024–3031.
  • 8BUTCHER J C. Runge–Kutta methods for ordinary differential equations[M].Numerical analysis and optimization. Springer International Publishing, 2015: 37–58.
  • 9COMMANDER K W, PROSPERETTI A. Linear pressurewaves in bubbly liquids: Comparison between theoryand experiments[J]. The Journal of the Acoustical Societyof America, 1989, 85(2): 732–746.
  • 10KELLER J B, KOLODNER I I. Damping of underwaterexplosion bubble oscillations[J]. J. Appl. Phys., 1956,27(10): 1152–1161.

二级参考文献12

  • 1陈谦,邹欣晔,程建春.超声波声孔效应中气泡动力学的研究[J].物理学报,2006,55(12):6476-6481. 被引量:32
  • 2Rayleigh J W. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity [J]. Philos Mag, 1917, 34:94- 98.
  • 3Plesset M S, Chapman R B. Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary [J]. J. Fluid Mech., 1917, 47:283-290.
  • 4Noltingk B E, Neppiras E A. Cavitation Proudces by Ultrasonics [J]. Proc. Soc., London, 1950, 64B: 674-685.
  • 5Kurz T, Metten B, Schanz D. Molecular Dynamics Simulations of Bubble Collapse At Sonoluminescence Conditions [J]. Drittes Physikalisches Institute, Universitat Burgerstrasse, 42- 44.
  • 6吴先梅.瞬态单一声空化气泡的动力学过程及空化发光[R】.北京:中国科学院,2003.
  • 7Steven J R, Seth P. Molecular Dynamics Simulation of Sonolunimescence [J]. Review of Modern Physics, 2002.
  • 8Michael P B. Single-Bubble Sonoluminescence [J]. Review of Modern Physics, 2002.
  • 9Gaitan D F. Observation of Sonolunimescence from a Single, Stable Cavitation Bubble in a Water [J]. In: M F Hamilton, D T Blackstock (ed). Nonlinear Acoustics, 1990:459- 463.
  • 10杨阳,宗丰德.超声驱动下激励参数对单泡空化振动的影响[J].力学学报,2009,41(1):8-14. 被引量:8

共引文献27

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部