期刊文献+

基于模糊水平集的脑肿瘤MR图像分割方法 被引量:4

Brain tumor MR image segmentation method based on fuzzy level set
下载PDF
导出
摘要 针对传统水平集(Level Set)方法对脑肿瘤MR图像进行分割时易在弱边缘处产生泄露的问题,提出一种新的基于模糊水平集的脑肿瘤MR图像分割方法。采用模糊聚类算法对图像进行预分割,得到脑肿瘤MR图像的感兴趣区域;将聚类分割结果作为水平集演化的初始轮廓;利用聚类结果计算水平集演化的初始化条件和控制参数。算法执行效率得到了提高,并且克服了水平集演化依赖于初始化条件和控制参数且需要较多人工干预的缺陷,增加了方法的鲁棒性。实验结果表明,该方法鲁棒性强,能够快速、准确地分割出MR图像中的脑肿瘤,具有重要的临床意义。 Since the traditional level set method used to segment the brain tumor MR image is liable to generate the leakageat weak edges,a new brain tumor MR image segmentation method based on fuzzy level set is proposed,in which the fuzzy clus?tering algorithm is used to pre?segment the image to get the interest area of brain tumor MR image,the result of clustering seg?mentation is taken as the initial contour of level set evolution,and then the clustering result is used to calculate the initial condi?tions and control parameters of the level set evolution. This method can improve the algorithm execution efficiency;overcomethe defects that the level set evolution relies on initial conditions,control parameters and more manual intervention;and im?prove the robustness. The experimental results show this method has high robustness,can segment the brain tumor in MR imagequickly and accurately,and has important clinical significance.
作者 张腾达 吕晓琪 任晓颖 谷宇 张明 ZHANG Tengda;Lv Xiaoqi;REN Xiaoying;GU Yu;ZHANG Ming(School of Information Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China)
出处 《现代电子技术》 北大核心 2016年第18期91-95,共5页 Modern Electronics Technique
基金 国家自然科学基金项目(61179019) 内蒙古自然科学基金面上项目(2013MS0908) 内蒙古自治区高等学校科学研究项目(NJZY145)
关键词 脑肿瘤 MR 模糊聚类 水平集 图像分割 brain tumor MR fuzzy clustering level set image segmentation
  • 相关文献

参考文献12

  • 1王相海,李放.同向平均梯度的各向异性扩散模型[J].中国图象图形学报,2011,16(12):2105-2111. 被引量:5
  • 2杨照峰,时合生.基于改进QPSO的模糊C-均值聚类算法[J].现代电子技术,2014,37(7):118-120. 被引量:3
  • 3潘颖,刘晨彬,张海石,黄峰平,夏顺仁.基于磁共振图像特征的脑胶质瘤MIB-1指数无创检测[J].航天医学与医学工程,2012,25(3):207-211. 被引量:4
  • 4KARANTZALOS K,ARGIALAS D. Improving edge detectionand watershed segmentation with anisotropic diffusion and mor.phological levellings [J]. International journal of remotesensing,2006,27(24):5427-5434.
  • 5ARAKERI M P,REDDY G R M. Efficient fuzzy clusteringbased approach to brain tumor segmentation on MR images[C].Proceedings of 2011 First International Conference onComputational Intelligence and Information Technology. Pune:Springer Berlin Heidelberg,2011:790-795.
  • 6LI C M,XU C Y,GUI C F,et al. Distance regularized levelset evolution and its application to image segmentation [J].IEEE transactions on image processing,2010,19(12):3243-3254.
  • 7RAKESH M,RAVI T. Image segmentation and detection of tu.mor objects in MR brain images using FUZZY C . MEANS(FCM) algorithm [J]. International journal of engineering re.search and applications,2012,2(3):2088-2094.
  • 8RASTGARPOUR M, SHANBEHZADEH J. A new kernel .based fuzzy level set method for automated segmentation ofmedical images in the presence of intensity in homogeneity [J].Computational and mathematical methods in medicine,2014(1):231-239.
  • 9BEZDEK J C. A convergence theorem for the fuzzy ISODATAclustering algorithms [J]. IEEE transactions on pattern analysisand machine intelligence,1980,2(1):1-8.
  • 10杨悦,郭树旭,任瑞治,于永力.基于核函数及空间邻域信息的FCM图像分割新算法[J].吉林大学学报(工学版),2011,41(S2):283-287. 被引量:10

二级参考文献39

  • 1姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 2高连如,张兵,张霞,申茜.基于局部标准差的遥感图像噪声评估方法研究[J].遥感学报,2007,11(2):201-208. 被引量:54
  • 3Pollack IF, Hamihon RL, Burnham J, et al. Impact of proliferation index on outcome in childhood malignant gliomas: results in a muhiinstitutional cohort [ J ]. Neurosurgery, 2002, 50(6) : 1238-1244.
  • 4Rate AM,Sharma MC, Karak AK, et al. Clinicopathological features, MIB-1 labeling index and apoptotic index in recurrent astrocytic tumors [J]. Pathol Oncol Res, 2001, 7 (4) : 267-278.
  • 5Bruzzone MG, Eoli M, Cuccarini V, et al. Genetic signature of adult gliomas and correlation with MRI features [J]. Expert Review of Molecular Diagnostics, 2009, 9 ( 7 ) : 709-720.
  • 6Michielsen K, Raedt HD. Integral-geometry morphological image analysis[J]. Physics Reports, 2001, 347 (6) : 461-538.
  • 7Duin RPW, Juszczak P, Paclik P, et al. PRTools4. 1, A Matlab toolbox for pattern recognition [ CP/OL ]. [ 2007-8 ]. http ://prtools. org.
  • 8Qi Shen, Wei Minshi, Wei Kong, et al. A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification [ J ]. Talanta, 2007, 71 (4) : 1679-1683.
  • 9Vapnik VN. Statistical learning theory[ M]. New York: John Wiley & Sons, 1998.
  • 10Chang Chih-Chung, Lin Chih-Jen. LIBSVM: a library for support vector machine [ EB/OL]. [ 2011-9-13 ]. http:// www. csie. ntu. edu. tw/- cjlin/libsvm.

共引文献34

同被引文献25

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部