期刊文献+

基于社区划分的影响力最大化算法 被引量:6

Division of community-based influence maximization algorithm
下载PDF
导出
摘要 影响力最大化问题是社会网络中的重要研究方向,其主要目的是获取社会网络中最有影响力的用户使通过这些用户获得影响传播范围的最大化。随着大数据时代的来临,传统的贪心算法因为复杂度高而不能有效解决大规模社会网络下影响力最大化的时间问题。提出一种基于社区划分的影响力最大化算法,利用影响概率将大规模社会网络分成较小的社区模块,并考虑社区边界节点之间的联系,从而最大程度缩小因社区划分造成的社区间的孤立。为进一步提高算法效率,在每个社区中以影响路径作为影响评估单元,同时对每个社区并行处理以便更高效地获取有影响力的节点。通过仿真实验验证了算法的可行性和高效性,其可以较好地适应大规模社会网络环境。 Influence maximization is a significant research direction in social networks. Its main purpose is to get themost influential users to make the range of influence diffusion maximizing. With the coming of big data, the traditionalgreedy algorithm can not overcome the time problem of influence maximization effectively because of high time complexityfor large-scale social networks. This paper proposes the community division to solve influence maximization. Large-scalesocial networks are divided into smaller community modules using influence probability. Thus, the isolation betweensub-communities is also eliminated at greatest degree considering the boundary nodes between communities. To improvethe efficiency further, this paper considers an independent influence path as an influence evaluation unit in each community.At the same time, the most influential nodes are found utilizing parallel processing at every community. Finally, the paperverifies the feasibility and efficiency of the proposed algorithm by simulation experiment, which can adapt to thelarge-scale social networks better.
作者 王双 李斌 刘学军 胡平 WANG Shuang;LI Bin;LIU Xuejun;HU Ping(College of Electronic and Information Engineering, Nanjing Tech University, Nanjing 211816, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第19期42-47,共6页 Computer Engineering and Applications
基金 国家公益性科研专项(No.201310162) 连云港科技支撑计划项目(No.SH1110)
关键词 社会网络 影响力最大化 社区划分 影响传播 social network influence maximization community division influence diffuse
  • 相关文献

参考文献14

  • 1Bakshy E,Eckles D,Yan R,et al.Social influence in socialadvertising:Evidence from field experiments[C].Proceedingsof the 13th ACM Conference on Electronic Commerce,Valencia,Spain,2012:146-161.
  • 2Li G,Chen S,Feng J,et al.Efficient location-aware influencemaximization[C].Proceedings of the 2014 ACM Conferenceon Management of Data,Snowbird,Utah,2014.
  • 3Luo Z L,Cai W D,Li Y J,et al.A pagerank-based heuristic algorithm for influence maximization in the social network[M].Recent Progress in Data Engineering and Internet Technology.Berlin Heidelberg:Springer,2012:485-490.
  • 4Chen W,Wang Y,Yang S.Efficient influence maximizationin social networks[C].Proceedings of the 15th ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining,Paris,France,2009:199-208.
  • 5Zhu Y,Wu W,Bi Y,et al.Better approximation algorithmsfor influence maximization in online social networks[J].Journal of Combinatorial Optimization,2013,43(10):1-12.
  • 6Goyal A,Bonchi F,Lakshmanan L V S.A data-basedapproach to social influence maximization[J].Proceedingsof the VLDB Endowment,2011,5(1):73-84.
  • 7Chen Y,Chang S,Chou C,et al.Exploring communitystructures for influence maximization in social networks[C].Proceedings of the 6th SNA-KDD Workshop on SocialNetwork Mining and Analysis held in conjunction withKDD,Beijing,China,2012:1-12.
  • 8Yu H,Kim S K,Kim J.Scalable and parallelizable processingof influence maximization for large-scale socialnetworks[C].Proceedings of the 2013 IEEE InternationalConference on Data Engineering.[S.l.]:IEEE ComputerSociety,2013:266-277.
  • 9陈浩,王轶彤.基于阈值的社交网络影响力最大化算法[J].计算机研究与发展,2012,49(10):2181-2188. 被引量:22
  • 10Galstyan A,Musoyan V,Cohen P,Maximizing influencepropagation in network with community structure[J].Physical Review E,2009,79(5):711-715.

二级参考文献32

  • 1Domingos P, Richardon M. Mining the Network Value of Customers [ C ]//Conference on Knowledge Discovery in Data Mining. New York: ACM Press, 2001 : 57-66.
  • 2Richardson M, Domingos P. Mining Knowledge-Sharing Sites for Viral Marketing [ C ]//Proceedings of the Eighth Intl Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 2002: 61-67.
  • 3Kempe D, Kleinberg J, Tardos E. Maxmizing the Spread of Influence through a Social Network [ C ]//Proceedins of the 9th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2003: 137-146.
  • 4Girvan M, Newman M E J. Community Structure in Social and Biological Networks [ J ]. Proc Natl Acad Sci USA, 2002, 99(12) : 7821-7826.
  • 5Granovetter M. Threshold Models of Collective Behavior [J]. The American Journal of Sociology, 1978, 83(6): 1420-1443.
  • 6Schelling T C. Micromotives and Macrobehavior [ M]. New York: Norton, 1978.
  • 7Berger E. Dynamic Monopolies of Constant Size [ J]. Journal of Combinatorial Theory: Series B, 2001, 83(2): 191-200.
  • 8Young H P. The Diffusion of Innovations in Social Networks [ R ]. MD, Bahimore: Department of Economics, The Johns Hopkins University, 2002: 1-19.
  • 9Richardson M, Domingos P. Mining Knowledge-Sharing Sites for Viral Marketing [ C ]//Proceedings of the Eighth Intl Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 2002: 61-70.
  • 10Radicchi F, Cstellano C, Cecconi F, et al. Defining and Identifying Communities in Networks [ JJ. Proc Natl Acad Sci USA, 2004, 101 (9) : 2658-2662.

共引文献26

同被引文献27

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部