期刊文献+

带自控能力的捕食模型正解存在性与数值模拟

Existence and numerical simulation of positive solutions for predator model with self-limitation
下载PDF
导出
摘要 在齐次Dirichlet边界条件下,研究一类低密度食饵下,捕食者具有自控能力的捕食模型平衡态正解存在性。通过连续延拓意义下建立的连续算子,利用度理论给出了平衡态正解存在的充分条件,并对理论结果进行数值模拟。研究结果表明,只要捕食者和食饵的生长率适当大,则捕食者和食饵可以共存。 The existence of steady-state positive solutions for a predator-prey model with low density prey and self-limitedpredator is studied under the homogeneous Dirichlet boundary conditions. Using the continuous operators established bycontinuous extension, a sufficient condition for the existence of steady-state positive solutions is given by the degree theory.Furthermore, the theoretical results are simulated by numerical method. The research shows that, the predator and preycan coexist as long as the growth rates of the predator and prey are large suitably.
作者 李莹 王利娟 LI Ying;WANG Lijuan(Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第19期53-56,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.11401356) 宝鸡文理学院重点科研项目(No.ZK11138 No.ZK12043)
关键词 捕食食饵模型 平衡态 数值模拟 predator-prey model steady-state numerical simulation
  • 相关文献

参考文献14

  • 1Li S B,Wu J H.Qualitative analysis of a predator-preymodel with predator saturation and competition[J].ActaApplicandae Mathematicae,2015(1):1-21.
  • 2Kooi B W,Venturino E.Ecoepidemic predator-prey modelwith feeding satiation,prey herd behavior and abandonedinfected prey[J].Mathematical Biosciences,2016,274:58-72.
  • 3Wang R,Jia Y F.Analysis on bifurcation for a predatorpreymodel with Beddington-Deangelis functional responseand non-selective harvesting[J].Acta Applicandae Mathematicae,2016,143(1):15-27.
  • 4Sharma S,Samanta G P.A Leslie-Gower predator-preymodel with disease in prey incorporating a prey refuge[J].Chaos Solitons & Fractals,2015,70(1):69-84.
  • 5Wu S N,Shi J P,Wu B Y.Global existence of solutionsand uniform persistence of a diffusive predatorpreymodel with prey-taxis[J].Journal of Differential Equations,2016,260(7):5847-5874.
  • 6Jiang H L,Wang L J,YAO R F.Numerical simulationand qualitative analysis for a predator-prey model withB-D functional response[J].Mathematics and Computersin Simulation,2015,117:39-53.
  • 7Du Y H,Hsu S B.A diffusive predator-prey model inheterogeneous environment[J].J Differential Equations,2004,203(2):331-364.
  • 8Du Y H,Wang M X.Asymptotic behavior of positivesteady-states to a predator-prey model[J].Proc Roy SocEdinburgh Sect A,2006,136(4):759-778.
  • 9Peng R,Wang M X.Uniqueness and stability of steadystates for a predator-prey model in heterogeneous environment[J].Proc Amer Math Soc,2008,136(3):859-865.
  • 10Wang L J,Jiang H L.Properties and numerical simulationsof positive solutions for a variable-territory model[J].Applied Mathematics and Computation,2014,236:647-662.

二级参考文献16

  • 1PENG Rui,WANG MingXin.Qualitative analysis on a diffusive prey-predator model with ratio-dependent functional response[J].Science China Mathematics,2008,51(11):2043-2058. 被引量:3
  • 2Wlatman P,Hubbel S P,Hsu S B.Theoretical and exper- imental investigations of microbial competition in contin- uous culture[M]//Modeling and Differential Equations in Biology.New York:Marcel Dekker, 1978: 107-192.
  • 3Brown K J.Spatially in homogeneous steady state solu- tions for systems of equations deciding interaction popu- lations[J].Journal of Mathematical Analysis and Applica- tions, 1983,95( 1 ) :252-264.
  • 4Pao C V.Coexistence and stability of a competition-diffu- sion system in population dynamics[J].Journal of Mathe- matical Analysis and Applications, 1981,83 ( 1 ) : 54-76.
  • 5Li L G, Logan R.Positive solutions to general elliptic competition models[J].Differential Integral Equations, 1991, 4(4) :817-834.
  • 6Wu J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis, 2000,39(7) : 817-835.
  • 7Hutson V,Lou Y,Mischaikow K.Spatial heterogeneity of resources versus Lotka-Volterra dynamics[J].Joumal of Dif- ferential Equations, 2002, 185 : 97-136.
  • 8Lou Y, Salome M,Peter P.Loops and branches of coex- istence states in a Lotka-Volterra competition model[J]. Journal of Differential Equations,2006,230(2) :720-742.
  • 9Hutson V,Lou Y,Mischaikow K,et al.Competing species near the degenerate limit[J].SIAM Journal of Mathematics Analysis, 2003,35 : 453-491.
  • 10Hutson V,Lou Y,Mischaikow K.Convergence in compe- tition models with small diffusion coefficients[J].Joumal of Differential Equations, 2005,211 ( 1 ) : 135-161.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部