期刊文献+

自适应精英反向学习共生生物搜索算法 被引量:16

Symbiotic organisms search algorithm using adaptive elite oppositionbased learning
下载PDF
导出
摘要 针对共生生物搜索算法在求解高维复杂问题时存在过早收敛,求解精度不高及后期搜索迟滞等问题,结合自适应思想,利用不同差分扰动项和精英反向学习策略对算法进行改进,得到一种改进的共生生物搜索算法。对14个标准测试函数的仿真实验结果进行分析,相比于原算法和其他三种目前流行的算法,改进算法在收敛速度和求解精度方面均具有明显的优势,寻优能力更强。 Aiming at the problems of poor convergence, low searching precision and ease of premature convergencewhen solving the complex optimization problems, combining with adaptive strategy, an improved SOS algorithm with differentdifference perturbation terms and elite opposition-base learning strategy is proposed. Experiments are conducted onthe 14 benchmark functions and the results show that the improved SOS algorithm has obviously better performance inconvergence speed, solution precision and global optimization than SOS algorithm and other three algorithms.
作者 周虎 赵辉 周欢 王骁飞 ZHOU Hu;ZHAO Hui;ZHOU Huan;WANG Xiaofei(College of Aeronautics and Astronautics, Air Force Engineering University, Xi’an 710038, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第19期161-166,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.71501184)
关键词 共生生物搜索算法 差分扰动 自适应 精英反向学习 Symbiotic Organisms Search(SOS) difference perturbation adaptive adjustment elite opposition-based learning
  • 相关文献

参考文献17

  • 1Cheng M Y,Prayogo D.Symbiotic organisms search:Anew metaheuristic optimization algorithm[J].Computersand Structures,2014,139:98-112.
  • 2Tang K S,Man K F,Kwong S,et al.Genetic algorithmsand their applications[J].IEEE Signal ProcessingMagazine,1996,13:22-37.
  • 3Kennedy J,Eberhart R.Particle swarm optimization[C].Proceedings of IEEE International Conference on NeuralNetworks,1995:1942-1949.
  • 4Karaboga D,Basturk B.A powerful and efficient algorithmfor numerical function optimization:Artificial BeeColony(ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
  • 5Liu B,Wang L,Jin Y H,et al.Improved particle swarmoptimization combined with chaos[J].Chaos,Solutions &Fractals,2005,25(2):1261-1271.
  • 6Zhang J Q,Sanderson A C.SADE:Adaptive differentialevolution with optional external archive[J].IEEE Transactionson Evolutionary Computation,2009,13(5):945-958.
  • 7Rathaweera A,Halgamuge S,Watson H.Self-organizinghierarchical particle swarm optimizer with time-varyingacceleration coefficients[J].IEEE Transaction on EvolutionaryComputation,2004,8(3):240-255.
  • 8牛培峰,肖兴军,李国强,马云飞,陈贵林,张先臣.基于万有引力搜索算法的电厂锅炉NO_x排放模型的参数优化[J].动力工程学报,2013,33(2):100-106. 被引量:21
  • 9Rodriguez F J,Garcia-Martinez C,Lozano M.Hybrid metaheuristicsbased on evolutionary algorithms and simulatedannealing:Taxonomy comparison,and synergy test[J].IEEE Transactions on Evolutionary Computation,2012(6):787-800.
  • 10Yang X S,Deb S.Cuckoo search via levy flights[C].Procof World Congress on Nature and Biologically InspiredComputing,Coimbatore,India,2009:210-214.

二级参考文献32

  • 1王春林,周昊,周樟华,凌忠钱,李国能,岑可法.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76. 被引量:98
  • 2刘定平,陈敏生,陆继东.电站锅炉高效低污染燃烧优化控制系统设计[J].电力自动化设备,2006,26(5):46-49. 被引量:8
  • 3Karaboga D.An idea based on honey bee swarm for numerical optimization[R].Erciyes University,Engineering Faculty,Computer Engineering Department,2005.
  • 4Kennedy J,Eberhart R.Particle swarm optimization[C].IEEE Int Conf on Neural Networks.Perth,1995: 1942-1949.
  • 5Tang K S,Man K F,Kwong S,et al.Genetic algorithms and their applications[J].IEEE Signal Processing Magazine,1996,13(6): 22-37.
  • 6Dorigo M,Stutzle T.Ant colony optimization[M].Cambrige: MA MIT Press,2004.
  • 7Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization: Artificial bee colony(ABC) algorithm[J].J of Global Optimization,2007,39(3): 459-471.
  • 8Karaboga D,Basturk B.A comparative study of artificial bee colony algorithm[J].Applied Mathematics and Computation,2009,214(1): 108-32.
  • 9Karaboga D,Akay B.A modified artificial bee colony(ABC) algorithm for constrained optimization problems[J].Applied Soft Computing,2011,11(3): 3021-3031.
  • 10Karaboga D.A novel clustering approach: Artificial bee colony(ABC) algorithm[J].Applied Soft Computing,2011,11(1): 652-657.

共引文献51

同被引文献128

引证文献16

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部