期刊文献+

一种基于十五阶的FastICA改进算法 被引量:4

Improved Fast ICA algorithm based on fifteen-order Newton iteration
下载PDF
导出
摘要 快速独立分量分析(FastICA)因其收敛速度快而被受关注,但存在初始值选取不当可能导致算法的收敛速度减慢甚至不收敛的问题。针对基本牛顿迭代FastICA算法对初始值选择比较敏感的缺点,以最大化负熵为目标函数,引入十五阶牛顿迭代的修正形式对FastICA算法的核心迭代过程进行改进,改进算法的收敛性不再依赖于初始值的选择,而且具有更快的收敛速度。将改进算法应用到仿真实验,实验结果显示,改进算法在分离效果相当的前提下,迭代次数更少,收敛速度更快,而且收敛速度更加稳定。 Fast Independent Component Analysis(FastICA)has attached broad attention as its fast convergence. However,if the initial vectors are chosen incorrectly, the algorithm may converge slowly or even not converge. The FastICA algorithmbased on the-fifteen order Newton iterative correction form is improved by modifying kernel iterative process aiming tosolve the problem that basic FastICA algorithm is sensitive to initial vectors. The improved algorithm convergence is independenton the initial values, and has a faster convergence speed compared with the basis FastICA. Simulation experimentsshow that the iteration number decreases with more stable convergence speed compared with the basis FastICA.
作者 罗文娟 袁莉芬 何怡刚 LUO Wenjuan;YUAN Lifen;HE Yigang(College of Physics and Information Science, Hunan Normal University, Changsha 410000, China;School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230000, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第20期108-113,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61102035 No.61201108) 湖南师范大学青年优秀人才培养计划(2012) 中国博士后科学研究基金(No.2014M551798) 合肥工业大学春华计划项目(No.2014HGCH0012)
关键词 快速独立分量分析(FastICA) 牛顿迭代 初值敏感性 十五阶 Fast Independent Component Analysis(FastICA) Newton iteration initial value sensitivity fifteen-order
  • 相关文献

参考文献18

  • 1Comon P.Independent component analysis,a new concept?[J].Signal Processing,1994,36(3):287-314.
  • 2Hyvarnen A.Fast and robust fixed-point algorithms for independentcomponent analysis[J].IEEE Transactions on NeuralNetworks,1999,10(3):626-634.
  • 3Hyvarnen A,Oja E.A fast fixed-point algorithms for independentcomponent analysis[J].Neural Computation,1997,9(7):1483-1492.
  • 4Amari S.Natural gradient works efficiently in learning[J].Neural Computation,1998,10(2):251-276.
  • 5Shang Li,Huang Deshuang,Du Jixiang,et al.Palmprint recognitionusing FastICA algorithm and radial basis probabilisticneural network[J].Neurocomputing,2006,69(13/15):1782-1786.
  • 6Karkunen J,Wang Liuyue,Vigario R.Nonlinear PCA typeapproaches for source separation and independent componentanalysis[C].1995 IEEE International Conferenceon Neural Networks Proceedings,Perth,Australia,1995:995-1000.
  • 7Cao X R,Liu R W.General approach to blind source separation[J].IEEE Transactions on Signal Processing,1996,44(3):562-571.
  • 8李庆杨 易大义 等.现代数值分析[M].北京:高等教育出版社,1995..
  • 9Kou Jisheng,Li Yitian,Wang Xiuhua.Some modificationsof Newton’s method with fifth-order convergence[J].Journalof Computational and Applied Mathematics,2008,209(2):146-152.
  • 10李洋洋,郭清伟.Simpson牛顿公式的一种改进[J].合肥工业大学学报(自然科学版),2012,35(6):853-856. 被引量:6

二级参考文献32

共引文献28

同被引文献39

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部