期刊文献+

基于近邻分类的增量学习分类算法研究 被引量:2

Research on incremental learning classification algorithm based on near neighbor
下载PDF
导出
摘要 为解决分类器学习新样本知识的问题,提出一种基于近邻算法的增量学习算法。该算法以最近邻算法为基础,首先计算新样本与标准样本之间的匹配度,找到最佳匹配样本和次佳匹配样本,然后通过与匹配度阈值进行比较来决定是类内学习还是类别学习。算法采用UCI中的标准数据集进行实验并应用于车辆识别仿真,其结果验证了该算法的有效性。实验进一步研究了匹配度阈值的选择和初始化样本数量选取对分类正确率影响。 In order to solve the classifier problem of learning new sample knowledge, an incremental learning algorithmbased on distance is proposed. The algorithm is based on the nearest neighbor algorithm to increase the function of incrementallearning. Calculating the matching degree between new input sample and model samples, the algorithm finds the best andsecond best matching degrees and compares them with the threshold. The comparative results decide whether it increasessamples amount or adds a new category to realize incremental learning. The algorithm is applied to the UCI standard databaseand experiment of vehicle type recognition. The experimental results prove the algorithm’s efficient. Also, more experimentsare conducted to analyze and verify how standard sample amount and matching degree threshold affect the final results.
作者 叶青 卢梓豪 周洁 宋赞 YE Qing;LU Zihao;ZHOU Jie;SONG Zan(College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第20期154-157,共4页 Computer Engineering and Applications
基金 湖南省教育厅重点资助项目(No.12A006)
关键词 增量学习 最近邻算法 匹配度 incremental learning nearest neighbor algorithm matching degree
  • 相关文献

参考文献12

  • 1Polikar R,Byorick J,Krause S,et al.Learn++:a classifier independent incremental learning algorithm for supervised neural networks[C].Proceedings of the International Joint Conference on Neural Networks,2002,2:1742-1747.
  • 2Okamoto K,Ozawa S,Abe S.A fast incremental learningalgorithm of RBF networks with long-term memory[C].Proceedings of the International Joint Conference on NeuralNetworks,Oregon,USA,2003:102-107.
  • 3Orabona F,Keshet J,Caputo B.Bounded kernel-basedonline learning[J].Journal of Machine Learning Research,2009,10:2643-2666.
  • 4Grabner H,Leistner C,Bischof H.Semi-supervised onlineboosting for robust tracking[C].10th European Conferenceon Computer Vision,Marseille,France,2008:234-247.
  • 5Zheng Jun,Shen Furao,Fan Hongjun,et al.An onlineincremental learning support vector machine for large-scaledata[J].Neural Computing and Applications,2013(5).
  • 6Makili L,Vega J,Dormido-Canto S.Incremental supportvector machines for fast reliable image recognition[J].Fusion Engineering and Design,2012.
  • 7Jia Hongbin,Murphey Y L,Gutchess D,et al.Identifyingknowledge domain and incremental new class learning inSVM[C].IEEE International Joint Conference on NeuralNetwork,Montreal,Canada,2005.
  • 8滕月阳,唐焕文,张海霞.一种新的支持向量机增量学习算法[J].计算机工程与应用,2004,40(36):77-80. 被引量:7
  • 9郭躬德,黄杰,陈黎飞.基于KNN模型的增量学习算法[J].模式识别与人工智能,2010,23(5):701-707. 被引量:26
  • 10秦玉平,陈一荻,王春立,王秀坤.一种新的类增量学习方法[J].计算机工程与应用,2011,47(34):181-183. 被引量:2

二级参考文献47

共引文献32

同被引文献15

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部