期刊文献+

基于压缩感知的实时手势检测和跟踪算法 被引量:5

Real-time gesture detection and tracking algorithm based on compressive sensing
下载PDF
导出
摘要 基于计算机视觉的实时手势检测与跟踪算法是人机交互领域的一项关键技术,传统的手势检测与跟踪算法将检测和跟踪分成两个独立的模块进行,检测与跟踪结果受手势姿态变化、目标遮挡、运动模糊以及外界环境干扰等因素的影响。提出了一种基于压缩感知的实时手势检测和跟踪算法,将基于检测得到的手势信息与基于压缩感知跟踪算法得到的目标信息进行有效融合,从而实现有效的手势检测与跟踪,与传统算法相比,该算法能实现手势跟踪自动初始化和跟踪错误后自我恢复功能。实验结果表明,提出的算法能对手势运动进行快速、连续、准确的识别,满足人机交互的要求。 Real-time detection and tracking of gesture based on computer vision is key technology in the human-computerinteraction, many algorithms for detection and tracking of gesture have been investigated in recent decades, which consistedof detection and tracking algorithm as two independent modules. These algorithms are not applicable because they are easilyimpacted by the gesture posture, object occlusion, motion blur and external environment etc. In this paper, a novel algorithmfor detection and tracking of gesture is proposed based on real time gesture detection and tracking, the main advantagecompared with the traditional algorithm is that this proposed algorithm effectively fuses the results from detection andtracking modules. The proposed algorithm can initialize the gesture automatically and can recover by itself when the gestureis dropped. Experimental results show that the proposed algorithm can achieve rapid, accurate and continuous recognitionof the gesture motion and meet the requirements of the human-computer interaction.
作者 严权峰 王岳斌 白天 沈燕飞 YAN Quanfeng;WANG Yuebin;BAI Tian;SHEN Yanfei(College of Computer Science, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China;College of Computer and Communication, Hunan University, Changsha 410082, China;Center for Pervasive Computing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第20期182-187,230,共7页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(No.61471343)
关键词 压缩感知 手势识别 手势跟踪 compressive sensing gesture detection gesture tracking
  • 相关文献

参考文献16

  • 1Xiong Yingen,Fang Bing,Quek F.Extraction of hand gestureswith adaptive skin color models and its applicationsto meeting analysis[C].IEEE International Symposium onMultimedia,2006:647-651.
  • 2Zhang Zhengzhen,Shi Yuexiang.Skin color detecting uniteYCgCb color space with YCgCr color space[C].InternationalConference on Image Analysis and Signal Processing,2009:221-225.
  • 3Yang U,Kim B,Sohn K.Illumination invariant skin colorsegmentation[C].The 4th IEEE Conference on IndustrialElectronics and Applications,2009:636-641.
  • 4Ong E J,Bowden R.A boosted classifier tree for hand shapedetection[C].IEEE International Conference on AutomaticFace and Gesture Recognition,2004:889-894.
  • 5Bretzner L,Laptev I,Lindeberg T.Hand gesture recognitionusing multi-scale colour features,hierarchical modelsand particle filtering[C].Fifth IEEE International Conferenceon Automatic Face and Gesture Recognition,2002:405-410.
  • 6Baltzakis H,Argyros A,Lourakis M,et al.Tracking of humanhands and faces through probabilistic fusion of multiplevisual cues[C].International Conference on ComputerVision Systems(ICVS),2008:33-42.
  • 7Cheng Yizong.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,1995,17(8):790-799.
  • 8Bradski G R.Computer video face tracking for use in aperceptual user interface[J].Intel Technology Journal,1998:1-15.
  • 9Locas B D,Kanade T.An iterative image registration techniquewith an application to stereo vision[C].ProceedingsDARPA Image Understanding Workshop,1981:121-130.
  • 10Grabner H,Leistner C,Bischof H.Semi-supervised on-lineboosting for robust tracking[C].European Conference onComputer Vision,2008:234-247.

同被引文献17

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部