期刊文献+

利用骨架模型和格拉斯曼流形的3D人体动作识别 被引量:4

3D Human action recognition method using joint point model and Grassmann manifold
下载PDF
导出
摘要 为了通过几何特征的有效方法描述人体骨骼运动,构建3D人体动作识别系统,提出一种基于3D骨骼关节空间建模方法。首先,使用自回归和移动平均模型(ARMA)描述每个随着时间变化的运动轨迹,成功捕捉了时空动态运动信息。同时,将该模型的观察矩阵生成的子空间作为格拉斯曼流形中一个点;然后,通过学习控制切线(CT)描述每个类的均值,映射学习过程中的观察变量到所有CT形成局部切丛(LTB),LTB流形数据点可直接在分类器上完成分类;最后,提出的方法使用SVM分类器完成训练和分类。MSR-action 3D、Weizmann和UCF-Kinect三个数据库的实验结果验证了该方法的有效性,与几种基于深度数据的算法相比,该方法获得了最高的识别率,在延迟性方面的性能也表现最优,当帧数为30时,识别率达到97.91%,在延迟较高时,可达到期望识别率。 In order to effectively describe human skeleton movement by geometrical characteristics and build 3D humanaction recognition system, a modeling algorithm based on 3D bone joint is proposed. Firstly, Auto Regressive & MovingAverage(ARMA)is used to describe each trajectory over time, which successfully captures the information of temporaland spatial motion. Meanwhile, the model view matrix generated subspace generated from view matrix of the model is beingas a point on Grassmann manifold. Then, the mean of each class is described by learning Control Tangent(CT), duringthe mapping learning process, observed variables to all the control tangents is being formed Local Tangent Bundle(LTB).And the LTB manifold data points can be directly used to classify in the classifier. Finally, the proposed method uses theSVM classifier to complete training and classification. The effectiveness of the proposed algorithm is verified by experimentalresults on three databases MSR-action 3D, Weizmann and UCF-Kinect. Compared with several algorithms based on depthdata, proposed algorithm not only has achieved the highest recognition rate, but also performs best in terms of latency, andthe recognition rate is 97.91% when the number of frames is 30, so it achieves the desired recognition rate when the delayis high.
作者 吴珍珍 邓辉舫 WU Zhenzhen;DENG Huifang(Department of Information Technology, Hunan Women’s University, Changsha 410004, China;College of Computer Science and Technology, South China University of Technology, Guangzhou 510006, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第20期214-220,共7页 Computer Engineering and Applications
基金 湖南省教育厅科学研究青年项目(No.13B055)
关键词 动作识别 格拉斯曼流形 骨骼关节 回归和移动平均模型 控制切线 action recognition Grassmann manifold bone joint auto regressive & moving average control tangent
  • 相关文献

参考文献13

二级参考文献95

  • 1蔡昌盛,高井祥,李征航.利用GPS监测电离层总电子含量的季节性变化[J].武汉大学学报(信息科学版),2006,31(5):451-453. 被引量:32
  • 2李志刚,程宗颐,冯初刚,李伟超,李慧茹.电离层预报模型研究[J].地球物理学报,2007,50(2):327-337. 被引量:64
  • 3Cedras C, Shah M. Motion-Based recognition: A survey. Image and Vision Computing, 1995,13(2):129-155.
  • 4Aggarwal JK, Cai Q. Human motion analysis: A review. Computer Vision and Image Understanding, 1999,73(3):428-440.
  • 5Moeslund TB, Granum E. A survey of computer vision-based human motion capture. Computer Vision and Image Understanding, 2001,81(3):231-268.
  • 6Wang L, Hu WM, Tan TN. Recent developments in human motion analysis. Pattern Recognition, 2003,36(3):585-601.
  • 7Leo M, D'Orazio T, Spagnolo P. Human activity recognition for automatic visual surveillance of wide areas. In: Int'l Multimedia Conf., Proc. of the ACM 2nd Int'l Workshop on Video Surveillance & Sensor Networks. 2004. 124-130. http://portal.acm.org/ citation.c fm?id= 1026799.1026820
  • 8Wang L, Tan TN, Ning HZ, Weiming Hu. Silhouette analysis-based gait recognition for human identification. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(12): 1505-1518.
  • 9Duda RO, Hart PE, Stock DG. Pattern Classification. New York: John Wiley & Sons, 2001.11.
  • 10Campbell LW, Becker DA, Azarbayejani A, Bobick AF, Pentland A. Invariant features for 3D gesture recognition. In: Proc. of the Int'l Conf.on Automatic Face and Gesture Recognition. 1996. 157-162. http://doi.ieeecomputersociety.org/10.1109/AFGR. 1996. 557258

共引文献104

同被引文献23

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部