摘要
针对实际的工业过程建模中存在的多工况和采样延时这两大重要数据特征,首先利用LPV模型拟合多工况过程,选取线性ARX模型作为LPV的局部模型;同时将采样延时和数据的工况归属作为EM算法的隐含变量,然后对极大似然函数进行求解,辨识出各局部模型的参数;最后采用高斯权重函数将局部ARX模型融合为整体LPV模型。采用连续搅拌反应釜和三级高纯度精馏塔作为数据采样延时情形下的多工况过程建模仿真实例,在建立过程模型的同时准确地估计数据的采样延时。仿真结果表明该方法具有良好的建模效果,对于处理数据采样延时的多工况工业过程建模问题具有非常实用的价值。
Aiming at the data characters of multi-operating and sampling delay in real industrial process modeling, the linearparameter varying model is chosen to fit the multi-operating process. And the linear ARX model is selected as the localmodel structure. At the same time, the sampling time delay and data identity are taken as the hidden variables of theExpectation Maximization(EM)algorithm while calculating the Maximum Likelihood Estimation(MLE)function. Finallythe parameters of local models are acquired and the local ARX models are incorporated into the integral LPV modelthrough the Gaussian weighting function. The continuous stirring tank reactor and 3-stage high purity distillation columnare selected as the simulation examples of multi-operating process. The process models are established and sampling timedelay of the process data is estimated accurately at the same time. Simulation results show that the proposed method canpractically cope well with the modeling of the multi-operating industrial processes.
作者
黄从贵
高雅
彭力
HUANG Conggui;GAO Ya;PENG Li(School of IOT Technology, Wuxi Institute of Technology, Wuxi, Jiangsu 214121, China;College of Internet of Things Engineering, Jiangnan University,Wuxi, Jiangsu 214122, China)
出处
《计算机工程与应用》
CSCD
北大核心
2016年第20期251-256,262,共7页
Computer Engineering and Applications
基金
国家自然科学基金(No.61502204)
江苏省产学研联合创新资金-前瞻性联合研究项目(No.BY2014023-25)
江苏高校品牌专业建设工程资助项目(No.PPZY2015C240)
关键词
多工况过程
采样延时
期望最大化(EM)算法
参数估计
multi-operating process
sampling delay
Expectation Maximization(EM)algorithm
parameter estimation