摘要
针对非监督线性差分投影(unsupervised linear differential projection,ULDP)在特征提取过程中存在的不足,提出了基于多流形的非监督线性差分投影(multi-manifold unsupervised linear differential projection,MULDP)算法,并将其应用于人脸识别中。MULDP首先构造出多流形局部近邻图和多流形最大全局方差,然后通过多目标最优化问题求解出嵌入在高维空间的低维流形。这种映射不仅能表示全局结构,还能表示局部结构。该算法可以得到嵌入在高维空间的低维流形,更好地实现了局部与全局结构信息的有效保持。在ORL、Yale及AR人脸库上的实验结果验证了所提算法的优越性。
To overcome the drawbacks of existing unsupervised linear differential projection (ULDP), this paper proposesa novel algorithm called multi-manifold unsupervised linear differential projection (MULDP) for face recognition. Firstly, multi-manifold local neighborhood graph and the largest global variance are constructed. Nextly, a lowdimensionalmanifold embedded in high-dimensional space is calculated through the multi-objective optimization. Thismapping can represent not only the global structure but also the local structure. MULDP can get the low-dimensionalmanifolds embedded in a high-dimensional space and maintain the local and global structural information effectively.The experimental results on the ORL, Yale andAR face databases demonstrate the superiority of the proposed algorithm.
作者
杨章静
万鸣华
王巧丽
张凡龙
杨国为
YANG Zhangjing;WAN Minghua;WANG Qiaoli;ZHANG Fanlong;YANG Guowei(School of Technology, Nanjing Audit University, Nanjing 211815, China;Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education,Nanjing University of Science and Technology, Nanjing 210094, China;Key Laboratory of Trusted Cloud Computing and Big Data Analysis, Nanjing Xiaozhuang University, Nanjing 211171, China;Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University,Nanchang 330063, China)
出处
《计算机科学与探索》
CSCD
北大核心
2016年第11期1577-1586,共10页
Journal of Frontiers of Computer Science and Technology
基金
江苏省属高校自然科学基金Nos.15KJB520018
12KJA63001
国家自然科学基金Nos.61503195
61462064
61203243
61272077
高维信息智能感知与系统教育部重点实验室(南京理工大学)基金No.30920140122006~~
关键词
人脸识别
特征提取
多流形
非监督线性差分投影(ULDP)
face recognition
feature extraction
multi-manifold
unsupervised linear differential projection (ULDP)