期刊文献+

位置修复和粒子置换的FSUD-PSO签名网络社区发现

Location Repair and Particle Replacement Based FSUD-PSO for Signature Network Community Discovery
下载PDF
导出
摘要 为提高签名网络社区发现效果,解决其评估指标存在的数据耦合和依赖性,造成网络社区单指标优化存在较大局限性的问题,提出了基于位置修复和粒子置换的FSUD-PSO(fast sorting and uniform density of multi-objective particle swarm optimization)签名网络社区发现算法。首先,对签名网络模型进行研究,并在考虑数据耦合和依赖性前提下给出签名网络社区评价指标,以及多目标Pareto最优目标模型;其次,构建签名网络模型的多目标优化粒子编码与更新规则,并根据签名网络特点设计了位置修复和粒子置换策略,同时为提高多目标粒子群算法性能,设计了快速排序均匀密度的多目标粒子群算法FSUD-PSO;最后,通过标准测试集实验对比,验证了所提FSUD-PSO签名网络社区发现算法的有效性。 In order to improve the effect of signature network community discovery, and solve the evaluation indicatorof the presence of data coupling and dependence, which leads some limitations of single index optimization in networkcommunity, this paper proposes signature network community discovery based on FSUD-PSO (fast sorting and uniformdensity of multi-objective particle swarm optimization) with location repair and particle replacement. Firstly, this paperstudies the signature network model, and gives the community evaluation index of the signature network under the premiseof considering the data coupling and dependence. Secondly, this paper builds a signature network model with particlecoding and update rules for multi- objective optimization and network according to the characteristics of signaturedesign repair and particle replacement, at the same time, in order to improve multi-objective particle swarm algorithmperformance, it designs the FSUD-PSO algorithm. Finally, the effectiveness of the proposed FSUD-PSO signature network community is verified by comparing with the standard test sets.
作者 肖敏 郭美 胡山泉 XIAO Min;GUO Mei;HU Shanquan(College of Software and Communication Engineering, Xiangnan University, Chenzhou, Hunan 423000, China;Department of Information Construction and Management, Xiangnan University, Chenzhou, Hunan 423000, China)
出处 《计算机科学与探索》 CSCD 北大核心 2016年第11期1641-1650,共10页 Journal of Frontiers of Computer Science and Technology
基金 湖南省普通高等学校教学改革研究项目湘教通[2013]223号446 湘教通[2012]401号447~~
关键词 位置修复 粒子置换 多目标粒子群 快速排序 均匀密度 position repair particle replacement multi-objective particle swarm fast sorting uniform density
  • 相关文献

参考文献5

二级参考文献71

  • 1倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:70
  • 2Girvan M, Newman M E J. Community structure in so- cial and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826.
  • 3Newman M E J, (Airvan M. Finding and evaluating commu- nity structure in networks. Physical Review E, 2004, 69(2): 026113.
  • 4Zhang S H, Wang R S, Zhang X S. Identification of overlap- ping community structure in complex networks using fuzzy means clustering. Physica A: Statistical Mechanics and Its Applications, 2007, 374(1): 483-490.
  • 5Raghavan U N, Albert R, Kumara S. Near linear time algo- rithm to detect community structures in large-scale network. Physical Review E, 2007, 76(3): 036106.
  • 6Shang R H, Bai J, Jiao L C, Jin C. Community detection based on modularity and an improved genetic algorithm. Physica A: Statistical Mechanics and Its Applications, 2013, 392(5): 1215-1231.
  • 7Gong M C, Cai Q, Chen X W, Ma L J. Complex network clustering by multiobjective discrete particle swarm opti- mization based on decomposition. IEEE Transactions on Evolutionary Computation, 2014, 18(1): 82-97.
  • 8Brandes U, Delling D, Gaertler M, Goerke R, Hoefer M Nikoloski Z, Wagner D. Maximizing modularity is hard arXiv: physics/0608255, 2006.
  • 9', GuimergL R, Sales-Pardo M, Amaral L A N. Modularity from fluctuations in random graphs and complex network. Phys- ical Review E, 2004, 70(2): 025101.
  • 10Jia G B, Cai Z X, Musolesi M, Wang Y, Tennant D A, Weber R J, Heath J K, He S. Community detection in so- cial and biological networks using differential evolution. In: Proceedings of the 6th International Conference on Learn- ing and Intelligent Optimization Conference LION6. Heidel- berg: Springer, 2012. 71-85.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部