期刊文献+

通信设施智能巡检系统的设计与实现

Design and Implementation of Intelligent Inspection System for Communication Facilities
下载PDF
导出
摘要 针对通讯运营商的基站设备、IPRAN和天馈系统等自由资源的巡检,提出了基于移动终端的巡检方案,以Eclipse为开发平台,My SQL作为后台数据库,采用智能终端作为巡检工具,运用定位技术实现巡检线路实时监控、巡检轨迹合理规划;将采集到的抱杆和天线图像,采用图像自适应滤波技术和图像分割技术进行处理得到特征图像,进而得到机械下倾角,并提出了以天线挂高和采集距离作为修正参数得到测量修正值;最后,对历史巡检数据从区域、运维专业、故障类型、处理平均时长等多个维度进行统计和分析,形成直观趋势图,实现巡检系统预警和对代维单位及巡检人员的综合测评.系统解决基础工参更新实时性差、准确性低的问题,还可以自动统计基站断站时长.目前系统已经应用于某通信公司的日常基站巡检,取得了较好的效果. In accordance with the communication operator’s base station equipment, IPRAN and anten原na system and other free resources inspection, the inspection scheme based on mobile terminal is proposed.With Eclipse as the development platform, MySQL as the background database, intelligent terminal as atool for inspection, positioning technology is used to realize real-time monitoring and rational planning ofinspection track. Image adaptive filtering and image segmentation are used on the images of the pole andantenna to get the characteristic image, and then get the mechanical dip angle. The correction parametersare obtained from the antenna height and collecting distance as the correction parameters. Finally, by doingstatistics and analyzing the data of historical inspection from the regional, operation and maintenance pro原fessionals, the type of failure, the average length of processing and other dimensions, a visual trend char isformed, which realizes the early warning of the inspection system and the comprehensive evaluation of themaintenance unit and the inspection personnel. The problem of poor real-time performance and low accura原cy is solved. In addition, it can automatically countthe duration of off-station. At present, the system hasbeen applied to a communication company’s daily base station inspection, achieving good results.
作者 祁瑞丽 周子臣 林立忠 柴忠良 滑斌杰 李瑗 QI Rui-li;ZHOU Zi-chen;LIN Li-zhong;CHAI Zhong-liang;HUA Bin-jie;LI Yuan(School of Compute Science & Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China;Headquarters, 66127 Forces, Shijiazhuang, Hebei 050200, China)
出处 《石家庄学院学报》 2016年第6期44-50,共7页 Journal of Shijiazhuang University
基金 石家庄学院科研启动基金(21601000202)
关键词 巡检 通信设施 移动终端 定位 图像识别 数据挖掘 inspection communication facilities mobile terminal location technology image recognition data mining
  • 相关文献

参考文献4

二级参考文献90

  • 1刘基余 李征航.全球定位系统原理及其应用[M].北京:北京测绘出版社,1998..
  • 2QB/CU08-2002.800MHzCDMA数字蜂窝移动通信网定位业务:u接口技术要求[S].[S].,..
  • 3BOUGHRIRA A, FAY D, KHADIR M T. Kohonen map combined to the k-means algorithm for the identi- fication of day types of algerian electricity load[C]. Andrienko G. Computer Information Systems and In- dustrial Management Applications. Alger: Computer Information Systems and Industrial Management Ap- plications, 2008 : 78-83.
  • 4WU Fangxiang. A genetic weighted k means algorithm for clustering gene expression data[C] Yu Shidong. Second International Multi-Symposiums on Computer and Computational Sciences. Aomen: Second Interna- tional Multi-Symposiums on Computer and Computa- tional Sciences, 2007 : 68-75.
  • 5LIU Yanli,LIU Xiyu, MENG Yan. Clustering analysis based on improved k-means algorithm and its application in HRM systemiC] Niu Lian-qiang, Zhang Shengnan. First IEEE International Symposium on Information Tech nologies and Applications in Education. Kunming: First IEEE International Symposium on Information Technolo- gies and Applications in Education, 2007:473-477.
  • 6翟旭君.基于平行坐标法的可视化数据挖掘技术研究[D].北京:清华大学,2004.
  • 7IWATA T,SAITO K. Visualization of anomalies using mixture models[J]. Journal of Intelligent manufactur- ing.2005,16 (6) : 635=643.
  • 8SHIBATA T, FUJITA K, ITO K. A real-time learning processor based on k-means algorithm with automatic seeds generation[C]//Schaller A. International Sym- posium on System-on-Chip. Beijing: International Sym- posium on System-on-Chip, 2007 : 165-169.
  • 9HAUSER H,LEDERMANN F, DOLEISCH H. An- gular brushing of extended parallel coordinates[C]// Siirtola H. IEEE Symposium on Information Visualiza tion. Provence:IEEE Symposium on Information Visu- alization, 2012 : 127-130.
  • 10Andreopoulos A, Tsotsos J K. 50 years of objectrecognition: Directions forward [J]. Computer Vision andImage Understanding, 2013,117(8) : 827-891.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部