期刊文献+

Hadoop云平台MapReduce模型优化研究 被引量:10

Research on optimized MapReduce model of Hadoop cloud platform
下载PDF
导出
摘要 针对Hadoop平台Map Reduce分布式计算模型运行机制中的顺序制约而产生的计算资源浪费问题,从提高平台中每个执行节点的细粒度并行数据处理角度出发,结合Java共享内存多线程编程技术,对该模型进行了优化,提出一种Map Reduce+Open MP粗细粒度相结合的分布式并行计算模型。并在由四个节点组成的Hadoop集群环境下对不同规模大小的出租车GPS轨迹数据分析处理,验证该模型的性能和效率,实验结果证明Map Reduce+Open MP分布式并行计算模型确实能够提高针对大数据集的计算效率,是对Hadoop平台大数据分析处理模型有效的完善和优化。 Sequential control of running mechanism of MapReduce model on Hadoop platform can lead to waste of computingresources. From the perspective of the fine-grained parallel data processing of each node, combined withmulti-threads technique of Java shared memory, this paper optimizes MapReduce model and puts forward a MapReduce+OpenMP framework. This model is a distributed and parallel computing architecture based on Hadoop cloud platform,which combines computing resources of coarse and fine granularity. After programming and realizing on the GPS trajectorydata of the taxi in the Hadoop distributed cluster environment, the results show that this distributed parallel computingmodel can really improve the computing efficiency of processing big data set, and it is an effective optimization andimprovement to the MapReduce model of big data processing.
作者 张红 王晓明 曹洁 马彦宏 郭义戎 王慜 ZHANG Hong;WANG Xiaoming;CAO Jie;MA Yanhong;GUO Yirong;WANG Min(College of Electrical & Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China;College of Computer & Communication, Lanzhou University of Technology, Lanzhou 730050, China;State Grid Gansu Electric Company, Lanzhou 730030, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第22期22-25,共4页 Computer Engineering and Applications
基金 甘肃省自然科学基金(No.148RJZA019) 甘肃省科技支撑计划基金(No.1304GKCA023)
关键词 HADOOP MAPREDUCE OPENMP 分布式 并行 Hadoop MapReduce OpenMP distributed parallel
  • 相关文献

参考文献4

二级参考文献25

  • 1Dean J,Ghemawat S.MapReduce:simplified data processing on large clusters[C] //Communications of the ACM.vol.51,2008:107-113.
  • 2Vecchiola C,Pandey S,Buyya R.High-performance cloud computing:A view of scientific applications[C] // 2009 10th International Symposium on Pervasive Systems,Algorithms,and Networks.2009:4-16.
  • 3Yoo R M,Romano A,Kozyrakis C.Phoenix rebirth:Scalable MapReduce on a large-scale shared-memory system[C] // IEEE International Symposium on Workload Characterization,2009(IISWC 2009).2009:198-207.
  • 4Fang W,He B,Luo Q,et al.Mars:Accelerating MapReduce with Graphics Processors[J].IEEE Transactions on Parallel and Distributed Systems,2011,22:608-620.
  • 5Catanzaro B,Sundaram N,Keutzer K.A map reduce framework for programming graphics processors[C] //Workshop on Software Tools for MultiCore Systems.2008.
  • 6Hong C,Chen D,Chen W,et al.MapCG:writing parallel program portable between CPU and GPU[C] //Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques.New York,NY,USA:ACM,2010:217-226.
  • 7Zhai Yan-long,Su Hong-yi,Zhan Shou-yi.A Data Flow Optimization based approach for BPEL Processes Partition[C] //IEEE International Conference on e-Business Engineering (ICEBE 2007).HongKong,China,2007:410-413.
  • 8Zaharia M, Borthakur D, Sen S:anna J, et ak Delay scheduling: A simple technique for achieving locality and fairness in duster scheduling [C] //Proceedings of the 5th European Conference on Computer Systerr: New York: ACM, 2010: 265-278.
  • 9Isard M, Prabhakaran V, Currey J, et al. Quincy: Fair scheduling for distributed computing clusters [C] //Procee- dings of the 22nd Symposium on Operating Systems Principles: New York: ACM, 2009.. 261-276.
  • 10Dean J, Ghernawat S. MapReduce: Simplified data processing on large clusters [J]. Communications of the ACM, 2008, 51 (1) : 107-113.

共引文献177

同被引文献97

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部