期刊文献+

一种基于改进CRC的多模式匹配电路设计与仿真

Design and Simulation of the Multi-pattern Matching Circuits Based on Improved CRC
下载PDF
导出
摘要 为满足大数据时代海量数据的高速处理需求,在深入分析大数据匹配特点的基础上,设计了一种基于改进CRC的大规模多模式匹配硬件电路并进行了仿真。电路采用滑动窗口方式,利用FPGA强大的并行处理能力和改进的循环冗余校验码公式计算出匹配值,将其与模式库中的模式进行粗略匹配,过滤掉绝大部分不可能匹配的数据。然后将可能匹配的少量数据进行精确匹配。仿真实验结果表明,硬件匹配电路能有效过滤掉90%以上的不相关字符串,并且具有极高的数据处理速率,满足目前大规模数据的实时在线处理要求,能推广应用到电子通信、工业控制等诸多领域。 To satisfy the requirement of high speed processing of big data, a new multiple patternmatch hardware circuit based on improved CRC is designed and simulated by analyzing the characteristicsof the big data matching. The circutt uses the sliding window method. It can that impossibly match the models by using parallel processingcapabilitiesofFPGA andcalculating thematching values ofimproved cyclic redundancy check code formula. Then a small amount of data which ispossible to match w il be matched accurately. Simulation results show that the match circutt can achieve effectivereal - tm e processing of large - scale data as t has a high processing speed and can filter out morethan 90 % of irrelevant strings. It can be applied to many fields such as electronic communications and industrialcontrol.
作者 廖春蓝 LIAO Chunlan(School of Mechanical and Electrical Engineering of Guangzhou Panyu Polytechnic, Guangzhou 511483, China)
出处 《机械与电子》 2016年第6期62-64,67,共4页 Machinery & Electronics
基金 广东省自然科学基金项目(10151148301000001)
关键词 大数据 多模式匹配 循环冗余校验 仿真 big data multi -pattern matching cyclic redundancy check simulation
  • 相关文献

参考文献6

二级参考文献101

  • 1李宥谋,房鼎益.CRC编码算法研究与实现[J].西北大学学报(自然科学版),2006,36(6):895-898. 被引量:30
  • 2张树刚,张遂南,黄士坦.CRC校验码并行计算的FPGA实现[J].计算机技术与发展,2007,17(2):56-58. 被引量:42
  • 3Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18].
  • 4Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056].
  • 5Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299-310. [doi: 10.1145/1555349.1555384].
  • 6Hoefler T, Lumsdaine A, Dongarra J. Towards; efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240-249. [doi: 10.100'7/978-3-642-03770-2_30].
  • 7Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494-505.
  • 8Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245-254. [doi: 10.1109/CLUSTER.2010.30].
  • 9Polo J, Carrera D, Becerra Y, Torres J, Ayguad6 E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the 1EEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373-380. [doi: 10.1109/NOMS.2010.5488494].
  • 10Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce performance in heterogeneous environments. In: Draves R, van Renesse R, eds. Proc. of the ODSI. Berkeley: USENIX Association, 2008.29-42.

共引文献436

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部