期刊文献+

基于分布式图计算框架的好友推荐算法研究

STUDY ON A FRIEND RECOMMENDATION ALGORITHM BASED ON DISTRIBUTED GRAPH COMPUTING FRAMEWORK
下载PDF
导出
摘要 随着社交网络的兴起与发展,用户数目规模呈现出指数级增长的趋势。这些大规模数据里蕴含着许多有价值的信息,挖掘其中有用的信息已经成为学者研究的重点,好友推荐就是数据挖掘里的一个重要应用。为了获得更优的性能、更高的可扩展性,采用分布式平台解决大规模好友推荐成为学术界和工业界的一个发展趋势。目前使用得较广泛的为基于MapReduce框架的好友推荐算法,该方法有较高的可扩展性,但是受限于MapReduce低效的中间数据传输,存在性能缺陷。针对上述问题,提出一种基于分布式图计算框架的好友推荐算法。最后,在多个真实的社交网络数据集上评测了该方法。实验结果表明,该方法要优于业界先进的好友推荐算法,在准确率相当的情况下,性能大约为其他算法的7倍。 With the rise and development of social networking sites, the user number show a growth trend in exponential level, in these massive data there contains a lot of valuable information, and to mine the useful information has become the focus of the scholars in their studies. The friend recommendation algorithm is one of the most important applications in data mining. To acquire better performance and higher scalability, it becomes a developing trend in both the academia and the industry to use a distributed platform in solving the large-scale friend recommendation. Currently, the friend recommendation algorithm based on MapReduce framework has been widely used because of its high scalability. However, the inefficient transmission of the intermediate data of MapReduce results in the performance deficiencies. To solve these problems, the paper proposes a distributed graph computing framework-based friend recommendation algorithm. In end of the paper, we give the evaluation of the proposed algorithm on a couple of real social network datasets, and the experimental results show that it is superior to the advanced friend recommendation algorithms of the industry, and its performance is about seven times than that of other algorithms under the circumstance of similar accuracy.
作者 赵马沙 周薇 张豪 韩冀中 Zhao Masha;Zhou Wei;Zhang Hao;Han Jizhong(Institute of Information Engineering, Chinese Academy of Science, Beijing 100093 , China;University of Chinese Academy of Science, Beijing 100049 , China;School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065 , China)
出处 《计算机应用与软件》 CSCD 2016年第6期32-36,共5页 Computer Applications and Software
基金 国家自然科学基金项目(60903047) 国家高技术研究发展计划项目(2012AA01A401 2013AA013204) 中国科学院先导专项(XDA06030200)
关键词 好友推荐 分布式图计算框架 随机游走 Friend recommendation Distributed graph computing framework Random walk
  • 相关文献

参考文献15

二级参考文献73

  • 1陈向东.基于FOAF的社会网络模块的开发[J].华东理工大学学报(自然科学版),2007,33(B06):145-148. 被引量:7
  • 2Watts D J, Strongatz S H. Collective dynamics of smallwork networks[J]. Nature, 1998, (7).
  • 3Ellison N B, Steinfield C, Lampe C. Social network sites and society: current trends and future possibilities. Interactions Magazine, 2009, 16(1): 6-9.
  • 4Haobin Zhong, Lingyan Bi, et al. Research on the design method of mobile social network services. In: Conference on Information Management, Innovation Management and Industrial Engineering, Taipei, Taiwan, China, Dec 2008.
  • 5Jens Binder, Andrew Howes, Alistair Suteliffe. The problem of conflicting social spheres: effects of network structure on experienced tension in social network sites. In: Conference on Human Factors in Computing Systems, Boston, MA, April 2009.
  • 6Josef Noll, Mohammad M R, Chowdhury, et al. Semantically supported authentication and privacy in social networks. In: Conference on Emerging Security Information, Systems and Technologies, Valencia, Spain, October 2007.
  • 7Dan Brickley, Libby Miller. FOAF vocabulary specification 0.97. http://xmlns.com/foaf/spec/20100101.html.
  • 8http://www.foaf-project .org/original-intro.
  • 9Jennifer G, Hendler J, Parsia B. Trust networks on the semantic web. In: World Wide Web Conference, Budapest, Hungary, 2003.
  • 10张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:195

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部