期刊文献+

用于表情识别的半监督学习自适应提升算法

AN ADAPTIVE BOOSTING ALGORITHM WITH SEMI-SUPERVISED LEARNING FOR FACIAL EXPRESSION RECOGNITION
下载PDF
导出
摘要 针对半监督人脸表情识别算法在表情来源多样、姿态不一时准确率低的问题,在迁移学习自适应提升算法的基础上,提出一种新的半监督学习自适应提升算法。该算法通过近邻计算由训练集中的已标记样本求出未标记样本的类别,并借助Ada Boost.M1算法分别对多数据源的人脸表情样本和多姿态人脸表情样本展开识别,实现样本的多类识别任务。实验结果表明,与标号传递等半监督学习算法相比,该算法显著提高了表情识别率,且分别在多数据库和多姿态数据库上获得了73.33%和87.71%的最高识别率。 To address the low recognition rate of traditional facial expression recognition algorithm with semi-supervised learning caused by diverse expressions sources and different face attitudes, we propose a novel semi-supervised learning adaptive boosting ( SSL-AdaBoost) algorithm based on transplanting learning adaptive boosting algorithm. The algorithm determines the categories of unmarked samples by calculating the marked samples concentrated in training through near neighbour, and recognises by means of AdaBosst. Ml algorithm the facial expression sample with multi-data sources and the facial expression sample of multiple attitudes respectively to realise the multi-category recognition task of samples. Experimental results show that the algorithm significantly improves the expression recognition rate in comparison with the label propagation method and many other semi-supervised learning methods. Besides, it achieves the highest recognition rate by 73. 33% on multiple databases and 87. 71% on multi-attitude database respectively.
作者 吴会丛 贾克斌 蒋斌 Wu Huicong;Jia Kebin;Jiang Bin(College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China;College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 , China)
出处 《计算机应用与软件》 CSCD 2016年第6期272-276,共5页 Computer Applications and Software
基金 河北省自然科学基金项目(F2014208113)
关键词 人脸表情识别 半监督学习 自适应提升 Facial expression recognition Semi-supervised learning Adaptive boosting
  • 相关文献

参考文献17

  • 1刘帅师,田彦涛,王新竹.基于对称双线性模型的光照鲁棒性人脸表情识别[J].自动化学报,2012,38(12):1933-1940. 被引量:6
  • 2易积政,毛峡,Ishizuka Mitsuru,薛雨丽.基于特征点矢量与纹理形变能量参数融合的人脸表情识别[J].电子与信息学报,2013,35(10):2403-2410. 被引量:23
  • 3Chapelle 0,Scholkopf B,Zien A.Semi-supervised learning [M].Cambridge:MIT Press,2006.
  • 4Yan H B,Ang Jr M H,Poo A N.Cross-dataset facial expression recognition[C]Proceedings of IEEE International Conference on Roboticsand Automation, Shanghai,2011:5985-5990.
  • 5Li W Q,Chen D S.Multi-pose face recognition combining tensor faceand manifold learning [C]Proceedings of the IEEE International Conference on Computer Science and Automation Engineering.Shanghai:IEEE Press,2011:543-547.
  • 6Wang J H,You J,LiQ,et al.Orthogonal discriminant vector for face recognition acrosspose[J].Pattern Recognition,2012,45(12):4069-4079.
  • 7Li A N,Shang S G,Gao W.Coupled bias-variance tradeoff for crossposeface recognition[J].IEEE Transactions Image Process,2012,21(1):305-315.
  • 8Lee P H,Hsu G S,Wang Y W,et al.Subject-specific and pose-orientedfacial features for face recognition across poses [J].IEEE Transactionson Systems,Man,and Cybernetics-Part B:Cybernetics,2012,42(5):1357-1368.
  • 9Dai W Y,Yang Q, Xue G,et al.Boosting for transfer learning [C]Proceedings of the 24th International Conference on Machine Learning,Corvallis,2007:193-200.
  • 10Mallapragada P,Jin R,Jain A,et al.SemiBoost: Boosting for semisupervisedleaming[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2009,31(11):2000-2014.

二级参考文献13

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部