期刊文献+

关键生产参数挤出式乳胶丝质量建模与应用 被引量:1

Quality modeling and application of extruded latex thread based on key parameters
下载PDF
导出
摘要 为满足多工序挤出式乳胶丝高效稳定生产需要,基于挤出式乳胶丝关键生产参数,采用多重多元回归、广义回归神经网络(generalized regression neural network,GRNN)与量子遗传算法(quantum genetic algorithm,QGA)分别建立多重多元回归模型、GRNN模型与QGA-GRNN模型,并以均方误差(mean squared error,MSE)作为评价指标在应用中比较3个模型预测效果。应用结果表明:QGA-GRNN模型在应用中能取得更小的MSE,预测能力优于其他两个模型,适用于挤出式乳胶丝产品质量预测。 In order to meet the need of the efficient and stable production of extruded latex threadof multiple procedures, multivariate regression model, GRNN model and QGA-GRNN model,based on the key parameters, were established by using multivariate regression, generalizedregression neural network (GRNN) and quantum genetic algorithm (QGA). The mean square error(MSE) is applied as the evaluation index to compare 3 models. The application result indicatesthat QGA-GRNN model obtains smaller MSE, and its forecasting capacity is superior to the other two models. It is therefore appropriate for extruded Latex latex thread product quality prediction.
作者 唐木森 刘桂雄 谢炎庆 TANG Musen;LIU Guixiong;XIE Yanqing(School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510640,China;Guangdong Guoxing Latex Thread Co.,Ltd.,Jieyang 522000,China)
出处 《中国测试》 CAS 北大核心 2016年第7期103-106,共4页 China Measurement & Test
基金 广东省省级科技计划项目(2013B091500057 2013B011201339) 揭阳市产学研结合项目(2015020111)
关键词 乳胶丝 多重多元回归 广义回归神经网络 量子遗传算法 latex thread multivariate regression model GRNN QGA
  • 相关文献

参考文献3

二级参考文献24

共引文献33

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部