期刊文献+

基于HESSIAN增强和形态学尺度空间的视网膜血管分割 被引量:6

RETINAL VESSELS SEGMENTATION BASED ON HESSIAN ENHANCEMENT AND MORPHOLOGICAL SCALE SPACE
下载PDF
导出
摘要 眼底视网膜血管的走向、弯曲度、分叉度等性状分析已成为医学上诊断全身血管性疾病的重要手段。采集到的眼底图像常存在光照不均匀等现象,利用传统的血管分割方法难以对微小血管进行检测。为此提出一种基于改进Hessian矩阵增强和形态学尺度空间的分割方法。首先利用高斯函数构建多尺度Hessian增强滤波器,采用新型的血管相似性函数对血管网络进行对比度增强,同时平滑图像以减轻噪声;然后利用改进的Top-hat变换尺度空间从背景中提取血管,并引入形态学重建方法进一步突出血管像素,消除伪边缘及孤立点噪声;最后使用二次阈值化方法实现血管的最终分割。仿真结果表明,改进的分割方法在保证大血管脉络准确分割的同时,能够较好地实现微小血管分割。 Characters analysis in regard to the tre n d , curvature and b ifu rc a tio n o f re tin a l vessels in fundus has become the im po rtan t meanso f system ic vascular diseases diagnosis in m e dicine science. Because o f m ost collecte d fundus images has the phenom enon o f lig h tunevenness, it is d iffic u lt to use tra d itio n a l vessel segm entation methods to detect the m icro vessels. Therefore we proposed a segm entationa lg o rith m , it is based on the im proved Hessian m a trix enhancem ent and m orphological scale space. F ir s t, by using Gauss fu n c tio n thea lg o rith m constructs m u lti-sca le Hessian enhanced f ilt e r , and uses a novel vascular s im ila rity fu n c tio n to carry out the contrast enhancem ent onvascular n e tw o rk , w h ile smoothes the image to w eaken noise as w e ll; then it extracts the vessels fro m background using an im proved T o p-h attransform ation scale space, and introduces m orphological re construction m ethod to fu rth e r h ig h lig h t the vascular pixels and to e lim in a te thepseudo-edges and the noise o f o u tlie rs; fin a lly the a lgo rithm uses secondary thresho ld ing approach to realise fin a l vessel segm entation.S im u la tio n experim ental results showed that w h ile ensuring the accurate segm entation o f great vessels and c h o ro id , the im proved segm entationm ethod can be tter realise the segm entation o f m icro vessels.
作者 于挥 王小鹏 Yu Hui;Wang Xiaopeng(School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070 , Gansu, China)
出处 《计算机应用与软件》 CSCD 2016年第8期200-205,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61261029) 兰州市科技计划项目(2013-4-63) 金川公司预研基金项目(JCYY2013009)
关键词 视网膜血管 Hessian增强 尺度空间 形态学分割 Retinal vessel Hessian enhancement Scale space Morphological segmentation
  • 相关文献

参考文献4

二级参考文献32

  • 1Chabrier S, Rosenberger C, Laurent H, et al. Evaluating the segmentation result of a gray-level image [ A ]. In: Proceedings of 12th European Signal Processing Conference [ C ] , Vienna: European Association for Signal, Speech and Image Processing, 2004:953-956.
  • 2Warfield S K, Zou K H, Wells W M. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation [J]. IEEE Transactions on Medical Imaging, 2004, 23(7): 903-921.
  • 3Kwan RK-S, Evans A C, Pike G B. MRI simulation-based evaluation of image-processing and classification methods [ J ] . IEEE Transactions on Medical Imaging, 1999, 18(11 ) : 1085-1097.
  • 4BrainWeb: Simulated Brain Database [ EB/OL ]. http:// www. bic. mni. mcgill.ca/brainweb/, 2006-6-12/2007-6-17.
  • 5Pizer S M. Intensity mappings to linearize display devices [ J ]. Computer Graphics and Image Processing, 1981, 17(3) : 262-268.
  • 6Nyul L G, Udupa J K. On standardizing the MR image intensity scale [J]. Magnetic Resonance in Medicine, 1999, 42(6): 1072-1081.
  • 7Worth A, The Internet Brain Segmentation Repository (IBSR) [ EB/ OL]. http://www. cma. mgh. harvard.edu/ibsr/, 2006-6-20/2007- 6-15.
  • 8Horsch A. EFMI: European Federation for Medical Informatics- Working Group on Medical Image Processing [ EB/OL]. http:// www. efmi-wg-mip. net/, 2006-8-28/2007-6-16.
  • 9Yoo T. National Library of Medicine Insight Segmentation and Registration Toolkit ( ITK ) [ EB/OL ]. http ://www. itk. org, 2006- 11 - 13/2007-6-10.
  • 10Chalana V, Kim Y. A methodology for evaluation of boundary detection algorithms on medical images [ J]. IEEE Transactions on Medical Imaging, 1997, 16(5) :642-652.

共引文献90

同被引文献38

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部