期刊文献+

基于马尔可夫随机场框架的单幅图像去雾 被引量:3

Single image defogging based on Markov random field
下载PDF
导出
摘要 雾或霾等天气会降低场景的能见度,给机器视觉的后续处理造成影响。针对图像雾霾退化的恢复及现有基于马尔可夫随机场图像去雾算法的缺陷,提出了一种新的基于马尔可夫随机场和暗通道先验的图像去雾算法。该算法以雾天条件下退化模型为基础,通过介质传输图和原始无雾图像的约束条件,利用暗通道先验获取介质传输图的粗估计,构造MRF框架下的代价函数。为使去雾图像保持更多的纹理细节,引入纹理检测函数改进代价函数,最终求得去雾图像和介质传输图。实验结果表明,该方法可以得到较好的去雾效果,同时保持较多的纹理细节和更快的运算时间。 The weather,such as fog or haze can significantly degrade the visibility of a scene,which is a major problem for many application of computer vision. To resolve the problem of image defogging and the defects of existing image enhancement algorithm based on Markov random field,this paper proposed a novel method,which based on the Markov random field and the dark channel prior. This algorithm was based on the degradation model under the condition of fog,used dark channel prior to achieve the coarse estimation of the optical transmission,through the constraints of the optical transmission and the original image,developed a cost function in the framework of Markov random field. To keep more texture details,it introduced the texture detection function to make better the cost function,and finally obtained defogging image and the medium transmission.The experimental results show that this method can get better defogging image,while maintaining good texture details,and faster operation time.
作者 眭萍 毕笃彦 马时平 何林远 Sui Ping;Bi Duyan;Ma Shiping;He Linyuan(School of Aeronautics & Astronautics, Air Force Engineering University, X i 5 an, 710038 , China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第9期2844-2847,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61372167 61379104)
关键词 马尔可夫随机场 图像去雾 暗通道先验 大气散射模型 Markov random field(MRF) image defogging dark channel prior atmospheric scattering model
  • 相关文献

同被引文献20

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部