期刊文献+

名词短语事件指代消解研究 被引量:1

Research on noun phrase event anaphora resolution
下载PDF
导出
摘要 对名词短语的事件指代消解进行研究,使用平面特征、结构化句法特征和语义特征等,根据SVM机器学习的方法进行英文事件的指代消解,通过在计算事件语义相似度的元组(语义角色)中加入时间和地点元素改进语义特征来提高事件指代消解系统的性能;并且单独使用每种特征对语料进行实验,分析每种特征单独使用时对系统的影响。Onto Notes 4.0语料库上的实验结果显示,引入改进的语义特征后,与基准系统相比,系统的准确率和F值均有所提高。由此来看,在语义特征中加入时间和地点元素对事件指代消解具有正向的作用。 This paper focused on noun phrases event resolution. It improved the semantic features by adding the elements oftime and address when computing semantic similarity of tuples (semantic roles information). Experiments on the English portionof OntoNotes 4. 0 show that the semantic roles information ( Argm-Log, Argm-Tmp) can significantly boost the performanceof the baseline for event noun phrases resolution. It outperforms the baseline system by 0. 49% in precision and 0. 2% in Fmeasure.Consequently, it proves Argm-Log and Argm-Tmp can improve the event noun phrases resolution.
作者 陈耀文 张兴忠 郝晓燕 Chen Yaowen;Zhang Xingzhong;Hao Xiaoyan(College of Computer Science & Technology, Taiyuan University of Technology, Taiyuan 030024 , China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第10期2895-2897,2901,共4页 Application Research of Computers
基金 山西省自然科学基金资助项目(2012011011-2)
关键词 事件指代消解 语义特征 特征提取 机器学习 语料 event anaphora resolution semantic feature feature extraction SVM OntonOtes 4. 0
  • 相关文献

参考文献5

二级参考文献50

  • 1李国臣,罗云飞.采用优先选择策略的中文人称代词的指代消解[J].中文信息学报,2005,19(4):24-30. 被引量:33
  • 2周俊生,黄书剑,陈家骏,曲维光.一种基于图划分的无监督汉语指代消解算法[J].中文信息学报,2007,21(2):77-82. 被引量:19
  • 3刘开瑛 郭炳炎.自然语言理解[M].北京:科学出版社,1991.31-41.
  • 4Wee.Meng Soon,Hwee Tou Ng and Daniel Chung Yong lim.A machine learning approach to coreference resolution of noun phrase[J].Computational Linguistics,2001,27(4):521-544.
  • 5Vincent Ng and Claire Cardic.Improving machine learning approaches to coreference resolution[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,2002.
  • 6J.Hobbs.Resolving pronoun references[J].Lingua,1978.44:339-352.
  • 7S.Lappin and H.Leass.An algorithm for pronominal anaphora resolution[J].Computational Linguistics,1994.20(4):525-561.
  • 8D Zelenko,C Aone,A Richardella.Kernel Methods for Relation Extraction[J].Journal of MachineLearning Research.2003(2):1083-1106.
  • 9M Zhang,J Zhang,J Su,G Zhou.A Composite Kernel to Extract Relations between Entities with both Flat and Structured Features.Sydney[C]//ACL' 2006:825-832.
  • 10Yang Xiao.Feng.,Su J.and Tan C.L.2006,KernelBased Pronoun Resolution with Structured Syntactic Knowledge[C]//ACL ' 2006:41-48,Sydney,July 2006.

共引文献62

同被引文献11

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部