期刊文献+

融合用户行为和内容的微博用户影响力方法 被引量:9

Microblog user influence algorithm based on user behavior and content
下载PDF
导出
摘要 为了模拟信息在微博环境中的传播情况,根据微博用户行为(发布、关注、转发和评论等)和微博内容,提出一种融合用户行为和内容的微博用户影响力算法。通过对微博用户行为的分析得到行为因子数据,进而计算出用户影响力的权值。利用微博用户内容建立词共现矩阵,继而运用狄利克雷分配(LDA)模型进行潜在主题分布的识别,通过KL(Kullback Leibler)散度的方法得到用户之间的相似性,最后结合用户影响力权值得到用户的影响力。实验表明此算法较为有效。 In order to sim ulate the propagation o f info rm atio n in m icro blog e n v iro n m e n t,th is paper presented a m icro blog userin flu e n ce algo rithm based on user b e h a vio r(p o s t,fo llo w ,fo rw a rd and com m ent) and con tent. B ehavior factor data could be obtainedthrough the analysis o f the be havior o f m icro blog u se r,a n d then the user in flu e n ce w eigh t could be ca lcu la te d . T h is algorithm established the word co-occurrence m a trix using the m icro blog co n te n t,a n d then used L D A ( late nt D iric h le t a llo c a tio n ) toid e n tify the po tentia l top ic d is trib u tio n . I t a p plied K L ( K u llb a c k L e ib le r) divergence to obtain the s im ila rity between u se rs,f i na lly acquired the user in flu e n ce based on using in flu e n ce w e ig h t. E xperim ents show the effectiveness o f this a lg o rith m .
作者 师亚凯 马慧芳 张迪 鲁小勇 Shi Yakai;Ma Huifang;Zhang Di;Lu Xiaoyong(College of Computer Science & Engineering, Northwest Normal University, Lanzhou 730070 , China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第10期2906-2909,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61363058) 甘肃省自然科学研究基金资助项目(145RJZA232 145RJYA259 1606RJYA269) 甘肃省教育厅资助项目(2013B-007 2013A-016) 中国科学院计算技术研究所智能信息处理重点实验室开放基金资助项目(IIP2014-4) 青年教师科研能力提升计划资助项目(NWNU-LKQN-12-23)
关键词 微博 影响力 用户行为 信息传播 LDA模型 microblog user influence user behavior information propagation latent Dirichlet allocation
  • 相关文献

参考文献4

二级参考文献48

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:72
  • 2第31次中国互联网络发展状况统计报告[R].中国互联网络信息中心(CNNIC),2013,1.
  • 3Boyd D, Ellison N B. Social network sites Definition history and scholarship. Journal of Computer Mediated Communication, 2007, 13(1): 210-230.
  • 4Boyd D, Golder S, Lotan G. Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter//Proceedings of the Hawaii International Conference on System Sciences. Hawaii, USA, 2010 1 10.
  • 5Kwak H, Lee C, Park H, Moon S B. What is Twitter, a social network or a news media?//Proceedings of the World Wide Web Conference. Raleigh NC, USA, 2010:591 600.
  • 6Suh B, Hong L, Pirolli P, Chi E H. Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network//Proceedings of the IEEE International Conference on Social Computing-SocialCom. Palo Alto, USA, 2010: 177-184.
  • 7Zaman T R, Herbrich R, van Gael J, Stern D. Predicting information spreading in Twitter//Proceedings of the Neural Information Processing Systems. Vancouver, Canada, 2010, 104(45) : 598-601.
  • 8Stern D, Herbrich R, Graepel T. Matchbox: Large scale online Bayesian recommendations//Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009:111-120.
  • 9Yang Zi, Guo Jingyi, Cai Keke, et al. Understanding retweeting behaviors in social networks//Proceedings of the 19th International Conference on Information and Knowledge Management. Toronto, Canada, 2010:1633-1636.
  • 10Liben-Nowell D, Kleinberg J. Tracing information flow on a global scale using Internet chain letter data. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(12): 4633-4638.

共引文献149

同被引文献63

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部