期刊文献+

基于效益最大化的云虚拟机资源分配研究 被引量:6

Research of virtual machine resources allocation in cloud environment based on utility maximization
下载PDF
导出
摘要 针对云资源分配研究中缺乏对用户使用资源的效益情况进行研究的问题,提出了一种使用户效益最大化的云虚拟机资源分配模型。模型建立时以计算资源为研究对象,借鉴了网络带宽分配效用最大化的(network utility maximization,NUM)模型;在分析分配模型时,通过拉格朗日函数将模型简化为求解拉格朗日对偶函数,并引入模糊次梯度算法在理论上证明了可以得到模型的最优解;最后,将模型应用到云虚拟机资源的分配中,并与LINGO软件的结果进行了对比,验证了方案的可行性和算法较好的收敛性。实验结果表明,模型能够很好地实现虚拟机资源分配中用户效益最大化的目标。 In allusion to the actuality in the research of cloud resource allocation that the research based on users5 utilitymerely take up a small part,this paper proposed a cloud allocation model,which maximized the users5 utility. It took the computingresources as the research object and borrowed the idea of NUM model when constructed the model. Then it simplified themodel to Lagrangian dual function by using Lagrange function when analyzed the allocation model and introduced a fuzzy subgradientalgorithm to prove that the model5 s optimal solution could be solved through the algorithm. At last,it applied this modelin the allocation of virtual machine resources, and compared with LINGO software,and verified the feasibility of the projectand convergence of the algorithm. The results of the experiment show that the cloud allocation model is able to realize the targetto maximize the users’ utility very well.
作者 罗杰 张之明 高志强 程川 Luo Jie;Zhang Zhiming;Gao Zhiqiang;Cheng Chuan(Dept, of Information Engineering, Engineering University of CAPF, Xi5 an 710086 , China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第10期2963-2966,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61402529) 陕西省自然科学基金研究计划资助项目(2015JQ6266)
关键词 虚拟机资源分配 效益最大化 NUM模型 模糊次梯度算法 virtual machine allocation utility maximization NUM model fuzzy subgradient algorithm
  • 相关文献

参考文献7

二级参考文献111

  • 1张宏科,苏伟.新网络体系基础研究——一体化网络与普适服务[J].电子学报,2007,35(4):593-598. 被引量:126
  • 2Francesca F. A modified subgradient algorithm for Lagrangean relaxation [J]. Computers and Operations Research, 2000, 28(1): 33-52.
  • 3Zhao X, Luh P B. New bundle methods for solving Lagrangian relaxation dual problems [J]. J of Optimzation Theory and Applications, 2002, 113 (2) :373-397.
  • 4Kiwiel K C. The efficiency of subgradient projection methods for convex optimization, part I: General level methods[J]. SIAM J Control and Optimization, 1996,34(2): 660-676.
  • 5Naum Z Shor. Nondifferentiable Optimization and Polynomial Problems [M]. Boston: Boston Kluwer,1998.
  • 6Kiwiel K C. An aggregate subgradient method for nonsmooth convex minimization [ J ]. Mathematical Programming, 1983,27(3): 320-341.
  • 7Camerini P M, Fratta L, Maffioli F. On improving relaxation methods by modified gradient techniques[J].Mathematical Programming Study, 1975, 3:26-34.
  • 8Kim S, Ahn H. Convergence of a generalized subgradient method for nondifferentiable convex optimization [J]. Mathematical Programming, 1991,50(1):75-80.
  • 9Buyya R, Yeo C S, Venugopal S, et al. Cloud computing and e-merging IT platforms: vision, hype, and reality for delivering computing as the 5th utility[J]. Future Generation Computer Systems,2009,25(6) :599-616.
  • 10Armbrust M, Fox A, Griffith R, et al. Above the Clouds: A Berkeley View of Cloud Computing [EB/OL]. http..//www, ee- cs. berkeley, edu/Pubs/TechRpts/2009/EECS-2009-28, html, February 2009.

共引文献256

同被引文献40

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部