期刊文献+

一种结合用户可信度与相似度的鲁棒性推荐算法 被引量:2

Robust recommender algorithm based on user reliability and improved user similarity
下载PDF
导出
摘要 协同过滤推荐系统面临着托攻击的安全威胁。研究抵御托攻击的鲁棒性推荐算法已成为一个迫切的课题。传统的鲁棒性推荐算法在算法稳定性与推荐准确度之间难以权衡。针对该问题,首先定义一种用户可信度指标;然后改进传统的相似度计算方法,通过结合用户可信度与改进的相似度,滤除攻击概貌,为目标用户作出推荐。实验表明,与传统算法相比,该算法具备更强的稳定性,同时保持了良好的推荐准确度。 Shillin gattacks pose a significant threat to the security of collabora tive filte rin grecom mender systems. It has cometo be an im po rtan t task to develop the attack-re sistant techniques fo r robust collab ora tive recom m endation. H o w e ve r, tra d itio nal collab ora tive filte rin g algorithm s have weakness in the balance between sta b ility and p re d ictive accuracy. To address thisp ro b le m , th is paper proposed user re lia b ility and im proved the ca lcu la tio n o f user s im ila rity , and incorporated both user re lia bility and s im ila rity in to standard collaborative filte rin g fram ew ork. E xperim ents show that the proposed a lgo rithm perform s betterthan state-of-the -art recom m ender algorithm s in s ta b ility and p re d ictive accuracy.
作者 潘骏驰 张兴明 汪欣 Pan Junchi;Zhang Xingming;Wang Xin(National Digital Switching System Engineering & Technological R&D Center, Zhengzhou 450002, China;Zhuhai Comleader Information Science & Technology Co. , Ltd. , Zhuhai Guangdong 519000, China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第10期2988-2991,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2014AA01A704)
关键词 协同过滤 托攻击 用户可信度 相似度 鲁棒性算法 collaborative filtering shilling attack user reliability similarity robust algorithm
  • 相关文献

参考文献6

二级参考文献107

  • 1余力,刘鲁,罗掌华.我国电子商务推荐策略的比较分析[J].系统工程理论与实践,2004,24(8):96-101. 被引量:45
  • 2余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 3罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 4吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 5陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 6Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information Tapestry[J]. Communications of the ACM,1992,35(12):61-70.
  • 7Resnick P, Iacovou N, Suchak M, et al. GroupLens: An open architecture for collaborative filtering of netnews[C]//Proc, of the ACM CSCW' 94 Conf. on Computer Supported Cooperative Work. Chapel Hill:ACM, 1994:175-186.
  • 8Shardanand U,Mages'P. Social information filtering:Algorithms for automating "Word of Mouth"[C]//Proc. of the ACM CHI' 95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995:210-217.
  • 9Hill M, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use[C]//Proc, of the ACM CHI'95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995 : 194-201.
  • 10Claypool M, Gokhale A, Miranda T, et al. Combining contentbased and collaborative filters in an online newspaper [C]// ACM SIGIR' 99 Workshop on Recommender Systems: Algorithms and Evaluation. Berkeley: ACM, 1999.

共引文献458

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部