期刊文献+

基于仿生自主神经系统的节能高效云调度研究 被引量:2

Research on energy-efficient cloud scheduling based on bionic autonomic nervous systems
下载PDF
导出
摘要 为了实现兼顾性能和能耗的高效云调度管理机制,提出了一种基于仿生自主神经系统(BANS)的云调度管理系统。建立了理论模型来评估和分析重要的性能及能耗指标,并利用纯利润优化模型均衡性能和能耗之间的制约关系;基于理论分析结果,进一步利用最优性分析和自主触发机制实现了动态灵活的局部资源管理,同时,采用启发式算法来获取面向用户请求分发的全局最优调度策略。实验结果展示了重要的性能—能耗制约关系,同时也表明,相比传统负载均衡调度机制,局部自主资源管理可以在纯利润上带来约60%的显著提升,全局请求调度还将进一步带来约15%的提升效果。 For developing an e ffic ie n t cloud scheduling and management mechanism ta kin g perform ance and energy consum ption in to a cco u n t, this paper proposed a cloud scheduling and management system based on bio n ic autonom ic nervous systems(B A N S ) . I t presented a the ore tical m odel fo r eva lu ating and analyzing im po rtan t perform ance and energy consum ption inde xs.T h e n , it b u ilt a pure p ro fit op tim ization m odel fo r ba la ncing the tra deo ff between perform ance and energy consum ption. A c cordingto the ore tical an a lysis, th is paper fu rth e r adopted o p tim a lity analysis and an autonom ic trig ger mechanism fo r achievingdynam ic and fle x ib le management o f local resources. M e a n w h ile , it developed a h e u ristic algo rithm to obtain a global scheduling strategy fo r dispa tching user requests. E xperim enta l results illu s tra te the im po rtan t tra deo ff between perform ance and energyconsum ption. I t also demonstrates th a t the autonom ic resource management can b rin g a sig n ifica n t increase o f around 6 0 %in the pure p ro fit com pared w ith a tra d itio n a l load balance scheduling m e chanism , and the global request scheduling fu rth e rleads to that the pure p ro fit raises by about 15%.
作者 邱曦伟 邓紫璇 孙鹏 罗亮 向艳萍 Qiu Xiwei;Deng Zixuan;Sun Peng;Luo Liang;Xiang Yanping(School of Computer Science & Engineering, University of Electronic Science & Technology of China, Chengdu 611131 , China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第10期3011-3016,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61170042) 四川省青年科技创新研究团队资助项目(2015TD0002) 中央高校基本科研业务费资助项目(ZYGX2011Z001)
关键词 云计算 仿生自主神经系统 性能 能耗 优化调度 cloud computing bionic autonomic nervous systems performance energy consumption optimal scheduling
  • 相关文献

参考文献3

二级参考文献42

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2尹红军,李京,宋浒,李凌.云计算中运营商效益最优的资源分配机制[J].华中科技大学学报(自然科学版),2011,39(S1):51-55. 被引量:13
  • 3McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf.
  • 4Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268].
  • 5Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414.
  • 6Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69].
  • 7Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197].
  • 8Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665].
  • 9Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739].
  • 10Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017].

共引文献188

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部