摘要
针对复杂工业过程混合分布的问题,提出了基于鲁棒ICA-PCA(independent component analysis-principal component analysis)的故障诊断新方法。由于实际工业过程数据不可避免地带有大量干扰,为降低数据粗糙的影响,首先采用小波去噪算法提高建模数据质量;然后利用鲁棒ICA-PCA算法提取过程的非高斯和高斯信息,并构建了三个统计量进行故障的监控;最后将上述方法应用到田纳西—伊斯曼(Tennessee Eastman,TE)化工过程。仿真结果表明,相比于传统PCA算法、ICA-PCA等算法,鲁棒ICA-PCA方法能够有效地检测故障的发生,具有较好的鲁棒性和灵敏性。
This paper developed a robust new method of fault diagnosis based on independent component analysis-principalcomponent analysis (ICA-PCA) in chemical process, for complex industrial process hybrid distribution problems. In view ofthe practical industrial process data was inevitable with a large number of interference, first of all, it used wavelet denoising todeal with the real data for reducing the influence of outliers in the data. Then it established a robust ICA-PCA algorithm monitoringmodel. It applied the above method to the Tennessee Eastman (TE) chemical process and compared with the traditionalPCA algorithm, the algorithm of ICA-PCA, etc. The simulation results show that the proposed method has strong robustnessand sensitivity, can effectively detect the fault occurs.
作者
衷路生
解冬东
Zhong Lusheng;Xie Dongdong(School of Electrical & Electronic Engineering, East China of Jiaotong University, Nanchang 330013 , China)
出处
《计算机应用研究》
CSCD
北大核心
2016年第10期3026-3030,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(61263010
60904049)
江西省自然科学基金资助项目(20114BAB211014
20161BBE50082
20161BAB202067)
关键词
小波去噪
鲁棒ICA-PCA
主元分析
TE过程
故障检测
wavelet denoising
robust ICA-PCA
principal component analysis(PCA)
TE process
fault diagnosis