摘要
为了简化与方便估算,有理Bèzier曲线R(t)的导矢量模长估计问题通常转化为||R'(t)||≤λmaxi||P_i-P_(i+1)||中常数l的估计问题,其中P_i为R(t)对应的第i个控制点.针对有理二次Bèzier曲线的导矢量模长估计问题,提出参数l的最优下界估算方法.首先将有理二次Bèzier曲线的三个权因子的所有情形归结为8种类型;然后分别对每一类情形显式地给出参数l关于三个权因子的表达式,并证明了这是参数l对应的最优下界;最后综合所有的8类情形,给出了相应的结论.通过数值例子,进一步验证了该方法得到结果的最优性.
For the sake of simplification and convenience, the derivative bound estimation problem was usuallyturned into another estimation problem of parameter ? such that ( ) max i i 1 it ? ? R? ≤ P ? P , where Pi isthe i-th control point of a rational Bèzier curve R(t). This paper focuses on the estimation of the derivativebounds of a rational quadratic Bèzier curve, and provides the optimal low bound of the parameter ?. Firstly,it divides all of the cases of the three weights of R(t) into eight cases; secondly, it explicitly expresses theoptimal bound of ? in the three weights for each case; finally, it leads to a general conclusion for all of thecases. Numerical examples are also given to illustrate that the bounds of the new method are better thanthose of prevailing methods.
作者
史甲尔
陈小雕
金佳培
王毅刚
曾宇
Shi Jiaer;Chen Xiaodiao;Jin Jiapei;Wang Yigang;Zeng Yu(School of Computer, Hangzhou Dianzi University, Hangzhou 310018;School of Media and Design, Hangzhou Dianzi University, Hangzhou 310018)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2016年第11期1832-1837,共6页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61672009
61370218)