摘要
推特等微博已成为人们交流信息、发表观点的重要平台.针对微博数据海量、动态且复杂多样,导致从微博数据中实时获取有用信息具有一定的难度的问题,设计了一个交互的可视分析系统.系统首先基于关键词过滤和支持向量机分类动态地监控不断获取的微博数据;接着以热力图、统计图、词云等可视化方式呈现微博的过滤效果,以方便用户进行探索;最后借鉴视频运动放大技术对微博数据中的微小时变模式进行放大,能有效地发现数据中的微小特征.以推特数据为例进行实验的结果表明,该系统能动态地对微博数据进行有效分类,并能识别数据中的微小变化模式,帮助用户准确了解事件的发展.
Microblogs are now important platforms for people to communicate their opinions and emotions with others. However, it is difficult to effectively get messages of interest from microblogs, because of their enormous quantity, dynamics and complexity. In this paper, we present an interactive visual analytics system to analyze the data from microblogs. First, an effective SVM classifier is constructed interactively. The SVM classifier and keyword queries are used to filter messages and monitor the topics of interest. Then, we provide several data analysis and visualization tools including statistics tools, heat map, tag cloud. They can assist analysts to explore and understand the data. Additionally, we developed a new illustration method based on video magnification technique to reveal subtle temporal features in the data. The results of our experiment using data from Twitter show that our system can dynamically classify messages according to the topics of interest and reveal tiny patterns in the data from microblogs.
作者
吴向阳
张利军
陈万烤
计忠平
俞俊
Wu Xiangyang;Zhang Lijun;Chen Wankao;Ji Zhongping;Yu Jun(Institute of Graphics and Image, Hangzhou Dianzi University, Hangzhou 310018)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2016年第11期1872-1880,共9页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61003193
61572161)
关键词
微博可视化
可视分析
支持向量机
运动放大
microblogs visualization
visual analytics
support vector machine
motion magnification