期刊文献+

高校采暖负荷短期预测研究 被引量:1

Research for Short-term Prediction of the Heating Load in a University
下载PDF
导出
摘要 高校采暖建筑种类繁杂,缺乏有效的短期采暖负荷预测手段,造成了能源浪费。以某高校2015—2016年采暖历史数据为基础,以最高温度和最低温度为主要影响因素,建立了2-10-1结构的BP神经网络模型。结果表明:BP神经网络模型训练、验证及测试精度分别为0.048、0.054和0.096,总关联系数为0.975 5,可用于高校采暖负荷短期预测,为解决能源供需不平衡问题提供了科学手段。 The types of buildings which need the heating supply are complex in universities, and there is no effective method for forecasting the heating load in a short term. All these result in a waste of energy. In this paper, the BP neural network model was established in a 2-10-1 structure based on historical data of 2015-2016 heating load in a university which is located in cold regions. The main influential factors were the highest and lowest temperature. The results showed that the training,verifying and testing accuracy of BP neural network were respectively 0.048, 0.054 and 0.096, and R was 0.975 5. The method could be used for forecasting short-term load in college. At the same time it could also provide a scientific mean to solve the problem of the imbalance between energy supply and demand.
作者 宋军 葛党生 郭庆 张安超 SONG Jun;GE Dangsheng;GUO Qing;ZHANG Anchao(School of Mechanical and Power Engineering, Henan Polytechnic University,Jiaozuo 454003, Hehan, China)
出处 《能源研究与管理》 2016年第4期39-40,49,共3页 Energy Research and Management
基金 国家自然科学基金项目(51306046)
关键词 采暖热负荷 预测 影响因素 BP神经网络 heating loads forecasting influence factor BP neural network
  • 相关文献

参考文献2

二级参考文献3

  • 1史国庆,赵庆生.基于神经元网络的模型算法控制[J].信息与控制,1994,23(3):173-177. 被引量:5
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 3刘晨辉.电力系统负荷预报理论与方法[M].哈尔滨:哈尔滨工业大学出版社,1986..

共引文献8

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部