期刊文献+

非局部理论的裂纹纳米谐振梁振动特性

Vibration Characteristics of a Cracked Resonant Nano-Beam Considering the Nonlocal Effect
下载PDF
导出
摘要 以两端固支纳米谐振梁为研究对象,考虑非局部效应、非线性轴向拉伸应力以及裂纹建立其物理模型并推导出运动控制方程。将裂纹等效为连接两段纳米梁的扭转弹簧,研究非局部效应、裂纹参数对系统自由振动固有频率以及振动模态的影响。采用非线性静电力和非线性轴向拉伸应力模型,用多尺度的数值方法研究系统主谐波共振响应的非线性刚度硬化现象与非局部效应系数以及裂纹各参数的关系。数值结果表明,非局部效应系数越大,系统固有频率越小,主共振非线性强度越大。对于两端固支谐振梁系统,裂纹位置对系统固有频率以及主共振非线性强度的影响存在着三个分界点,分别是纳米梁中点以及距离两端四分之一的两个点。研究结果可在微纳米器件的设计、性能改进及健康检测中得到应用。 Characteristics of free transverse vibration and forced vibration of a cracked resonant nano-beam with both ends fixed are studied. The nonlocal effect, nonlinear axial stretching force and the crack effect are considered. The cracked nano-beam is modeled as two segments connected by a massless rotational spring located in the crack section. Dynamic equations of the nano-beam are derived and its nonlinear response is investigated by using the multiple scales method. The influence of the nonlocal effect and the crack position on the vibration nonlinearity is discussed. The numerical results show that enlarging the nonlocal effect coefficient can decrease the values of the natural frequencies and strengthen the nonlinearity of the resonant vibration. The effects of the crack parameters on the vibration characteristics are complicated.This study may be of interest for the design, performance improvement and health monitoring of nano-devices.
作者 郭旭晓 周含 张文明 GUO Xu-xiao;ZHOU Han;ZHANG Wen-ming(State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University,Shanghai 200240, China)
出处 《噪声与振动控制》 CSCD 2016年第6期1-6,共6页 Noise and Vibration Control
基金 国家优秀青年科学基金项目(11322215) 国家高层次人才特殊支持计划项目(青年拔尖人才) 教育部霍英东青年教师基金项目(141050)
关键词 振动与波 纳米梁 裂纹 非局部效应 非线性响应 vibration and wave nano-beam crack nonlocal effect nonlinear response
  • 相关文献

参考文献6

二级参考文献47

  • 1毛罕平,陈翠英.考虑动应力时加载频率对裂纹扩展速率的影响[J].江苏工学院学报,1993,14(6):26-32. 被引量:3
  • 2杨华,孙蓓蓓,李普,孙庆鸿.考虑微加工误差的微机械谐振器/滤波器结构鲁棒设计[J].振动与冲击,2005,24(1):33-36. 被引量:9
  • 3朱年勇,于虹,黄庆安.纳机械谐振器的非线性特性分析[J].电子器件,2005,28(1):35-37. 被引量:3
  • 4宋震煜,于虹.纳米梁非线性振动的动力学分析[J].微纳电子技术,2006,43(3):145-149. 被引量:6
  • 5Ponomarev P V, Lopatin A D. Calculation of the fatigue fracture under the influence of dynamic loads [ J ]. International Applied Mechanics, 1972, 8(6):613 -617.
  • 6Shih Y S, Wu G Y. Effect of vibration on fatigue crack growth of an edge crack for a rectangular plate [ J ]. International Journal of Fatigue, 2002, 24:557 566.
  • 7Schlums D H. Fatigue testing and crack analysis of resonating structures [ D ]. Swiss Federal Institute of Technology Zurich, 2001.
  • 8Yeh J T, Hong H S. Effect of branch frequency on dynamic fatigue behavior of slowly notched polyethylene polymers [ J ]. Journal of Polymer Research, 1994, 4 (1) :375 -383.
  • 9Dentsoras A J, Kouvaritakis E P. Effects of vibration frequency on fatigue crack propagation of a polymer at resonance [ J ]. Engineering Fracture Mechanics, 1995, 50(4) :467 -473.
  • 10Valanis K C. On the effect of frequency on fatigue life [ C ]. Presented at the winter annual meeting of the American Society of Mechanical Engineering, Washington D. C, November, 1981 : 15 - 20.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部