期刊文献+

Three-dimensional analysis of a faulted CO2 reservoir using an Eshelby-Mori-Tanaka approach to rock elastic properties and fault permeability 被引量:1

Three-dimensional analysis of a faulted CO_2 reservoir using an Eshelby-Mori-Tanaka approach to rock elastic properties and fault permeability
下载PDF
导出
摘要 This work develops a three-dimensional(3D) multiscale model to analyze a complex carbon dioxide(CO_2) faulted reservoir that includes some key geologic features of the San Andreas and nearby faults southwest of the Kimberlina site.The model uses the STOMP-CO2 code for flow modeling that is coupled to the ABAQUS~ finite element package for geomechanical analysis.A 3D ABAQUS~ finite element model is developed that contains a large number of 3D solid elements with two nearly parallel faults whose damage zones and cores are discretized using the same continuum elements.Five zones with different mineral compositions are considered:shale,sandstone,fault damaged sandstone,fault damaged shale,and fault core.Rocks' elastic properties that govern their poroelastic behavior are modeled by an Eshelby-Mori-Tanaka approach(EMTA).which can account for up to 15 mineral phases.The permeability of fault damage zones affected by crack density and orientations is also predicted by an EMTA formulation.A STOMP-CO2 grid that exactly maps the ABAQUS~ finite element model is built for coupled hydromechanical analyses.Simulations of the reservoir assuming three different crack pattern situations(including crack volume fraction and orientation) for the fault damage zones are performed to predict the potential leakage of CO_2 due to cracks that enhance the permeability of the fault damage zones.The results illustrate the important effect of the crack orientation on fault permeability that can lead to substantial leakage along the fault attained by the expansion of the CO_2 plume.Potential hydraulic fracture and tendency for the faults to slip are also examined and discussed in terms of stress distributions and geomechanical properties. This work develops a three-dimensional(3D) multiscale model to analyze a complex carbon dioxide(CO_2) faulted reservoir that includes some key geologic features of the San Andreas and nearby faults southwest of the Kimberlina site.The model uses the STOMP-CO2 code for flow modeling that is coupled to the ABAQUS~ finite element package for geomechanical analysis.A 3D ABAQUS~ finite element model is developed that contains a large number of 3D solid elements with two nearly parallel faults whose damage zones and cores are discretized using the same continuum elements.Five zones with different mineral compositions are considered:shale,sandstone,fault damaged sandstone,fault damaged shale,and fault core.Rocks' elastic properties that govern their poroelastic behavior are modeled by an Eshelby-Mori-Tanaka approach(EMTA).which can account for up to 15 mineral phases.The permeability of fault damage zones affected by crack density and orientations is also predicted by an EMTA formulation.A STOMP-CO2 grid that exactly maps the ABAQUS~ finite element model is built for coupled hydromechanical analyses.Simulations of the reservoir assuming three different crack pattern situations(including crack volume fraction and orientation) for the fault damage zones are performed to predict the potential leakage of CO_2 due to cracks that enhance the permeability of the fault damage zones.The results illustrate the important effect of the crack orientation on fault permeability that can lead to substantial leakage along the fault attained by the expansion of the CO_2 plume.Potential hydraulic fracture and tendency for the faults to slip are also examined and discussed in terms of stress distributions and geomechanical properties.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期828-845,共18页 岩石力学与岩土工程学报(英文版)
基金 provided by the National Energy Technology Laboratory and U.S.DOE,Office of Fossil Energy as part of the National Risk Assessment Partnership funded by the U.S.DOE Office of Vehicle Technologies
关键词 Carbon dioxide(CO_2) reservoir Geomechanical modeling MINERALOGY HOMOGENIZATION Fault LEAKAGE SLIP Elastic properties Carbon dioxide(CO_2) reservoir Geomechanical modeling Mineralogy Homogenization Fault Leakage Slip Elastic properties
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部