期刊文献+

参数识别问题混合有限元解的最大模误差估计 被引量:1

Maximum norm error estimates of mixed finite element solutions for parameters identification problems
下载PDF
导出
摘要 研究了参数识别问题混合有限元解的最大模误差估计.利用1阶Raviart-Thomas混合有限元离散状态和对偶状态变量,利用分片线性函数逼近控制变量,获得了状态变量和控制变量的最大模误差估计,这里控制变量的收敛阶是h^2,状态变量的收敛阶是h3/2|lnh|1/2.最后利用数值算例验证了理论结果. In this paper, we investigate maximum norm error estimates of the parameters identi cation problemsby Raviart-Thomas mixed nite element methods. The state and the co-state variables are approximated by theorder k = 1 Raviart-Thomas mixed nite element spaces and the control variable is approximated by piecewiselinear functions. We obtain maximum norm error estimates for the control variable and coupled state variable,the convergence order is h2 for the control and state variable and h32|lnh|12for co-state variable. The performanceof the error estimates is assessed by a numerical example.
作者 鲁祖亮 曹龙舟 李林 Lu Zuliang;Cao Longzhou;Li Lin(Key Laboratory for Nonlinear Science and System Structure, Chongqing Three Gorges University,Chongqing 404000, China;Research Center for Mathematics and Economics, Tianjin University of Finance and Economics,Tianjin 300222, China)
出处 《纯粹数学与应用数学》 2016年第6期562-573,共12页 Pure and Applied Mathematics
基金 国家自然科学基金(11201510 11171251) 重庆市高校科研创新团队(CXTDX201601035) 中国博士后科学基金(2015M580197) 教育部春晖计划(Z2015139) 重庆市科委项目(cstc2015jcyj A20001) 重庆市万州区科委项目
关键词 参数识别问题 混合有限元方法 最大模误差估计 parameters identi cation problems mixed nite element methods maximum norm error estimates
  • 相关文献

参考文献3

二级参考文献33

  • 1Robert A. Adams, Sobolev Spaces, Academic Press, 1978.
  • 2W. Alt, On the approximation of infinite optimisation problems with an application to optimal control problems, Appl. Math. Opt., 12 (1984), 15-27.
  • 3W. Alt and U. Mackenroth, Convergence of finite element approximations to state constrained convex parabolic boundary control problems, SIAM J. Control Optmi., 27 (1989), 718-736.
  • 4N. Arada, E. Casas and F. TrSltzsch, Error estimates for a semilinear elliptic control problem, Comput. Optim. Appl., 23:2 (2002), 201-229.
  • 5E. Casas, M. Mateos and F. TrSltzsch, Necessary and sufficient optimality conditions for optimization problems in function spaces and applications to control theory, ESIAM, Proceedings, 13 (2003), 18-30.
  • 6E. Casas and F. Troltzsch, Second order necessary and sufficient optimality conditions for opti- mization problems and applications to control theory, SIAM J. Optimiz., 13:2 (2002), 406-431.
  • 7P.G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
  • 8R.E. Ewing, M.-M. Liu and J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), 772-787.
  • 9F.S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47.
  • 10T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 13 (1979), 313-328.

共引文献12

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部