期刊文献+

Effect of carbon nanotube and silicon carbide on microstructure and dry sliding wear behavior of copper hybrid nanocomposites 被引量:1

碳纳米管和碳化硅对铜混合纳米复合材料显微组织和干滑动磨损行为的影响(英文)
下载PDF
导出
摘要 Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied from 1% to 4% withsilicon carbide content being fixed at 4%. The synthesis of copper hybrid nanocomposites involves ball milling, cold pressing andsintering followed by hot pressing. The developed hybrid nanocomposites were subjected to density, grain size, and hardness tests.The tribological performances of the nanocomposites were assessed by carrying out dry sliding wear tests using pin-on-steel disctribometer at different loads. A significant decrease in grain size was observed for the developed hybrid composites when comparedwith pure copper. An improvement of 80% in the micro-hardness of the hybrid nanocomposite has been recorded for 4% carbonnanotubes reinforced hybrid composites when compared with pure copper. An increase in content of CNTs in the hybridnanocomposites results in lowering of the friction coefficient and wear rates of hybrid nanocomposites. 研究了多壁碳纳米管和碳化硅包覆铜增强铜基混合纳米复合材料的显微组织和摩擦性能。碳纳米管含量为1%~4%,碳化硅含量固定在4%。铜杂化纳米复合材料的合成过程包含球磨、冷压、烧结,随后热压。对混合纳米复合材料进行了密度、晶粒尺寸和硬度测试。在不同载荷条件下,在销.钢盘摩擦仪上采用干滑动磨损评估纳米复合材料的摩擦性能。结果表明,与纯铜相比,混合纳米复合材料的晶粒尺寸明显减小,4%碳纳米管增强杂化纳米复合材料的显微硬度提高了80%。混合纳米复合材料中碳纳米管含量的增加导致材料的摩擦因数和磨损率降低。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3170-3182,共13页 中国有色金属学报(英文版)
关键词 COPPER carbon nanotubes (CNTs) SiC MICROHARDNESS wear mechanisms NANOCOMPOSITE 碳纳米管 碳化硅 显微硬度 磨损机制 纳米复合材料
  • 相关文献

参考文献4

二级参考文献54

  • 1邓福铭,陈小华,陈卫祥,李文铸.Electroless plating Ni-P matrix composite coating reinforced by carbon nanotubes[J].中国有色金属学会会刊:英文版,2004,14(4):681-685. 被引量:3
  • 2ZAHRAN R R,IBRAHIM IH M,SEDAHMED G H.The corrosion of graphite/copper composites in different aqueous environments[J].Material Letter,1996,28:237-244.
  • 3MOUSTAFA S F, El-BADRY S A, SANAD A M, KIEBACK B.Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders[J].Wear,2002,253:699-710.
  • 4ZHAO H J,LIU L,WU Y T,HU W B.Investigation on wear and corrosion behavior of Cu-graphite composites prepared by electroforming[J].Composites Science and Technology,2007,67:1210-1217.
  • 5MA X C,HE G Q,HE D H,CHEN C S,HU Z F.Sliding wear behavior of copper-graphite composite material for use in maglev transportation system[J].Wear,2008,265:1087-1092.
  • 6IIJIMA S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
  • 7HONG W T,TAI N H.Investigations on the thermal conductivity of composites reinforced with carbon nanotubes[J].Diamond and Related Materials,2008,17:1577-1581.
  • 8FILES B S.NASA/JSC carbon naaotube project stetus[J].Journal of Nanoparticle Research,1999,1:507-509.
  • 9ZHOU S M,ZHANG X B,DING Z P,MIN C Y,XU G L,ZHU W M.Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique [J]. Composites Part A: Applied Science and Manu facturing,2007,38:301-306.
  • 10SCHADLER L S,GIANNARIS S C,AJAYAN p M.Load transfer in carbon nanotube epoxy composites[J].Applied Physics Letter,1998,73:3842-3844.

共引文献52

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部