期刊文献+

基于PR算法的自适应ACO算法求解旅行商问题

An adaptive ACO algorithm based on PR for solving traveling salesman problem
下载PDF
导出
摘要 以著名的旅行商问题为研究对象,研究了基于线路重连(PR)算法的自适应蚁群算法(ACO)的应用。根据蚁群算法构解过程中的选择策略与信息素更新机制,提出了自适应的蚁群优化方法,即通过阈值接收算法(TA)中的阈值控制参数改变蚁群的确定选择与随机选择机会,从而控制了搜索方向。采用这种自适应的蚁群优化算法,避免蚁群算法陷入局部最优,使对解空间的更好地进行搜索。同时,在蚁群优化算法(ACO)中,嵌入路径重连算法(PR)来改进解的质量。实验结果证明了基于线路重连算法(PR)的自适应蚁群算法(ACO)在求解该问题时的有效性。 To solve the famous traveling salesman problem,the application of adaptive ant colony algorithmbased on path-relinking algorithm was studied in this paper. According to the process of selection strategy andinformation pheromone updating mechanism of the ant colony algorithm,the adaptive ant colony optimizationmethod was presented,i.e. the selection and random choice of ant colony were determined and the search dirctionwas controlled by optimum of the threshold parameters of the threshold algorithm. This adaptive ant colonyoptimization algorithm is used to search the solution space more effectively,which can effectively avoidfrom falling into local optimum. At the same time,in the ACO,path-relinking procedure is embedded into itto improve the solutions. The experimental results show that the adaptive ACO is very efficient and competitiveto solve the traveling salesman problem in terms of solution quality.
作者 张晓霞 李国宣 孙暄尧 杨丹 ZHANG Xiaoxia;LI Guoxuan;SUN Xuanyao;YANG Dan(School of Software Engineering,University of Science and Technology Liaoning,Anshan 114051,China)
出处 《辽宁科技大学学报》 CAS 2016年第6期468-475,共8页 Journal of University of Science and Technology Liaoning
基金 国家自然科学基金项目(61402213) 辽宁省教育厅基金资助项目(L2015265)
关键词 旅行商问题 自适应蚁群算法 线路重连算法 阈值接收算法 traveling salesman problem adaptive ant colony optimization path-relinking threshold accepting
  • 相关文献

参考文献3

二级参考文献40

  • 1孙力娟,王良俊,王汝传.改进的蚁群算法及其在TSP中的应用研究[J].通信学报,2004,25(10):111-116. 被引量:38
  • 2张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994..
  • 3Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm [ A ]. Proc. of the Parallel Problem Solving from Nature Conference ( PPSN' 92) [ C ]. Brussels, Belgium : Elsevier Publishing, 1992,509 - 520.
  • 4Gunes M, Sorges U, Bouazizi I. ARA the ant colony based routing algorithm for MANETs[ A ]. Proceedings International Conference on Parallel Processing Workshops [ C ] . Uuncouver, B C, Canada, 2002 : 79 - 85.
  • 5Lumer E, Faieta B. Diversity and adaptation in populations of clustering ants [ A ]. Proc of the 3 Conf On Simulation of Adaptive Behavior[ C ] . MIT Press, 1994:499 - 508.
  • 6Parpinelli R S,Lopes H S,Freitas. Data Mining with an ant colony optimization algorithm[J]. IEEE Transactions on Evolutionary Computation,2002,6(4) :321 - 332.
  • 7HOLLAND J H. Adaptation in nature and artificial systems[M]. USA: MIT Press, 1992.
  • 8GOLDBERG D E. Genetic Algorithms in Search, Optimization and Machine Learning[ M]. MA: Addison-Wesley, 1989.
  • 9COLORNI A, DORIGO M, MANIEZZO V, et al. Distributed optimization by ant colonies[ C]//Proceedings of the 1st European Conference on Artificial LIFE. Paris: Elsevier Publishing , 1991 : 134 - 142.
  • 10DORIGO M, GAMBARDELLA L M, Ant colony system: A cooperative learning approach to the traveling salesman problem[ J]. IEEE Transactions on Evolutionary Computation, 1997, 1 (1) : 53 - 66.

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部