期刊文献+

基于多源兴趣点的模糊地名空间范围划分方法 被引量:3

Delimitating the Vague Place Name Bound Using Multiple-Sources Points of Interest
下载PDF
导出
摘要 由于人类对现实世界进行认知和概念化的过程存在模糊性,许多人们在日常生活中使用的地名往往是没有明确边界范围的模糊区域。大数据时代的开启,为模糊地名空间范围的确定与表达提供了新思路。本文提出由k最邻近(k NN)离群点检测算法结合高斯混合模型(GMM)的方法,基于多源兴趣点(POI)数据获取模糊地名空间范围边界。该方法具有能有效识别离群点数据、参数敏感度低的特点。最后,分析了多源POI数据的应用对结果的影响。 The process of cognizing and conceptualizing the world suffers from vagueness, therefore vernacular place names used in daily life may not correspond to an formal designated region or place. Nowadays, the applications of Big Data supply the new chances for delimitating vague place name. This paper presents a method for defining the boundaries of vague place name using multi-source points of interest, which combines kth nearest neighbor outlier detection algorithm and Gaussian mixture model. With low sensitivity of parameters, the method effectively eliminates POIs that may not lie in the range of the place names. Finally, it is discussed that the results are effected by multi-sources data.
作者 黄潇莹 李霖 颜芬 HUANG Xiaoying;LI Lin;YAN Fen(School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China;Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, Wuhan 430079, China)
出处 《地理信息世界》 2016年第6期61-67,72,共8页 Geomatics World
基金 基础地理信息本体库开发关键技术及示范(201412014) 国家测绘地理信息局基金项目5号公告 [2014] 武汉市"黄鹤英才(科技)计划"项目(武人才办[2014]1号)资助
关键词 模糊地名 空间认知 离群点检测 POI vague place name spatial cognition outlier detection POI
  • 相关文献

参考文献1

二级参考文献28

  • 1[1]Longley P A,Goodchild M F,Maguire D J,et al.Geographic Information Systems and Science[M].Second Edition,New York:Wiley,2005.
  • 2[2]OpenGIS Consortium.The OpenGISTM Abstract Specification[M].Topic 5:Features,1999.
  • 3[3]Burrough P A.Natural Objects with Indeterminate Boundaries[A].Geographic Objects with Indeterminate Boundaries[C],Burrough P A,Frank A U.London:Taylor & Francis Lid.,1996.
  • 4[4]Bittner T,Stell J G.Vagueness and Rough Location[J].GeoInformatica,2002,6(2):99-121.
  • 5[5]Dutta S.Qualitative Spatial Reasoning:a Semi-Quantitative Approach Using Fuzzy Logic[A].Proceedings of the First Symposium on Design and Implemenmtion of Large Spatial Databases[C].1990.
  • 6[6]Bloch I,Fuzzy Spatial Relationships for Image Processing and Interpretation:a Review[J].Image and Vision Computing,2005,23:89-110.
  • 7[7]ADL.Alexandria Digital Library[DBOL].http://www.alexandria.ucsb.edu/,2002.
  • 8[8]Chaves M S,Silva M J,Martins B.GKB-Geographic Knowledge Base[R].Departamento de Informatica,Faculdade de Ciencias da Universidede de Lisboa,Campo Grande,Lisboa,Portugal,2005.
  • 9[10]ISO19109,http://www.seegrid.csiro.au/twiki/pub/Xmml/Feature Model/19109 DIS2002.pdf.
  • 10[11]Goodchild M F,Yuan M,Cova T J.Towards a General Theory of Geographic Representation in GIS[J].International Journal of Geographic Information Science,2007,21(3):239-260.

共引文献11

同被引文献37

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部