期刊文献+

基于改进RANSAC的消防机器人双目障碍检测 被引量:14

Improved RANSAC estimation based fire-fighting robot obstacle detection using binocular vision
下载PDF
导出
摘要 针对消防机器人自主作业的障碍物快速检测问题,给出了一种基于改进随机采样一致性估计的双目障碍物检测算法。该算法首先采集双目视觉左右视图,进行半全局立体匹配获取视差信息,然后采用随机采样一致性估计的平面拟合法提取地平面模型,并采用预检验法和内点阈值限定法同时对随机采样一致性估计进行改进,从而提高算法效率,实现障碍物快速检测。实验结果证明该方法能够准确、快速检测障碍物,满足消防机器人作业需求。 Considering the fast obstacle detection of autonomous stereo vision fire-fighting robot, an improved algorithm based on RANSAC(Random Sample Consensus)is proposed in this paper. The method collects left and right view from stereo vision system firstly to obtain the disparity by using SGBM(Semi-Global Stereo Matching), then extracts ground plane directly though fitting. In order to enhance algorithm efficiency, RANSAC estimation is improved by pre-verification and threshold-constrained. Experimental result shows that the proposed method satisfies the task of autonomous fire-fighting robot adequately, and is able to detect obstacles not only accurately but in real time.
作者 王军华 李丁 刘盛鹏 WANG Junhua;LI Ding;LIU Shengpeng(School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China;Shanghai Fire Research Institute of Ministry Public Security, Shanghai 200438, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第2期236-240,共5页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)项目(No.2012AA041503 No.2012AA041502) 上海市科委重点攻关项目(No.14DZ1206800)
关键词 立体匹配 随机采样一致性 预检验 平面拟合 障碍物检测 stereo matching Random Sample Consensus(RANSAC) pre-verification fitting ground plane obstacle detection
  • 相关文献

参考文献8

二级参考文献95

  • 1王仲民,岳宏,刘继岩.移动机器人多传感器信息融合技术述评[J].传感器技术,2005,24(4):5-7. 被引量:18
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 4黄明登,肖晓明,蔡自兴,于金霞.环境特征提取在移动机器人导航中的应用[J].控制工程,2007,14(3):332-335. 被引量:5
  • 5李海超,张广军.一种基于角点引导的快速立体边缘匹配方法[J].北京航空航天大学学报,2007,33(5):557-560. 被引量:9
  • 6Tao H, Sawhney H S, Kumar R. A global matching framework for stereo computation [ C ]//Proceedings International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001 : 532-539.
  • 7Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure [ C ]//Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China : IEEE, 2006 : 15-18.
  • 8Wang Zengfu, Zheng Zhigang. A region based stereo matching algorithm using cooperative optimization [ C ]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Alaska, USA: IEEE, 2008: 1-8.
  • 9Yang Q, Wang L, Yang R. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (3) :492-504.
  • 10Gong M L, Yang R, Wang L, et al. A performance study on different cost aggregation approaches used in real-time stereo matching [ J]. International Journal of Computer Vision, 2007, 75(2) : 283-296.

共引文献297

同被引文献84

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部