期刊文献+

基于门节点分级选择的CMOL电路单元快速容错映射 被引量:2

Fast Cells Defect-Tolerant Mapping Based on Gate Node Interval Selection in CMOL Circuits
下载PDF
导出
摘要 针对存在缺陷CMOL电路的单元容错映射问题,提出了一种分级选择电路门节点的容错映射方法.首先通过拓扑排序求出电路门的逻辑级;然后采用级间隔的方式进行选择,并对有缺陷连接的门节点进行惩罚,提高其被选择配置的概率.实验结果表明,与已有算法相比,该方法平均选择配置的门节点总数明显减少,在纳米二极管常开缺陷密度为40%、牺牲0.18%线长的情况下,CPU平均运行时间减少了30.68%. For the problem of cells defect-tolerant mapping in defect existed CMOL circuits,this paper proposes adefect-tolerant mapping method based on gate node interval selection.The logic circuit is topologically sorted tocalculate the gate logic level,then interval gate nodes with defective connects are punished to improve the selectedprobability to be reallocated.The experiment results indicated that compared with the published algorithms,the proposed method shows that30.68%of CPU runtime is reduced traded with0.18%increase of wire lengthwhen the struck-open defect rate of nano-devices is up to40%.
作者 汪纪波 夏银水 储著飞 王伦耀 Wang Jibo;Xia Yinshui;Chu Zhufei;Wang Lunyao(School of Information Science and Engineering, Ningbo University, Ningbo 315211)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第1期172-179,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61571248 61501268) 浙江省自然科学基金(LQ15F040001) 宁波市自然科学基金(2015A610112)
关键词 CMOL电路 容错映射 逻辑级 CMOL circuit defect-tolerant mapping logic level
  • 相关文献

参考文献2

二级参考文献25

  • 1Lu Wei and Lieber Charles M. Nanoelectronics from the bottom up[J]. Nature Materials, 2007, 6: 841-850.
  • 2Likharev K K and Strukov D B. CMOL: Devices, Circuits, and Architectures. Introducing Molecular Electronics[M]. Berlin: Springer, 2005: 447-477.
  • 3Likharev K K. Hybrid CMOS/nanoelectronic circuits: opportunities and challenges[J]. Journal of Nanoelectronics and Optoelectronics, 2008, 3(3): 203-230.
  • 4Strukov D B and Likharev K K. Defect-tolerant architectures for nanoelectronic crossbar memories[J]. Journal of Nanoscience and Nanotechnology, 2007, 7(1): 151-167.
  • 5Strukov D B and Likharev K K. CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices[J]. Nanotechnology, 2005, 16(6): 888-900.
  • 6Strukov D B and Williams R S. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20155-20158.
  • 7TUrel 0, Lee Hoon J, and Ma X, et al.. Nanoelectronic neuromorphic networks (crossNets): new results[C]. IEEE International Conference on Neural Networks-Conference Proceedings, Budapest, Hungary, July 25-29, 2004: 389-394.
  • 8Chen Gang, Song Xiao-yu, and Hu Ping. A theoretical investigation on CMOL FPGA cell assignment problem[J]. IEEE Transactions on Nanotechnology, 2009, 8(3): 322-329.
  • 9Srivastava Ankur, Kastner Ryan, and Chen Chun-hong, et al. Timing driven gate duplication[J]. IEEE Transactions on Very Large Scale Integration (VLS1) Systems, 2004, 12(1): 42-51.
  • 10Xia Yin-shui, Chu Zhu-fei, and Hung William N N, et al.. CMOL cell assignment by genetic algorithmiC]. 8th IEEE international NEWCAS Conference, Montreal, Canada, June 20-23, 2010: 25-28.

共引文献4

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部