期刊文献+

三角组合约束下的尺度不变特征描述子

Scale-invariant Feature Descriptor under Triangular Combination Constraint
下载PDF
导出
摘要 为克服单点描述子匹配数量少、匹配正确率低等问题,提出一种三角组合约束下的尺度不变特征描述子.首先利用几何约束将满足条件的3个特征点组合为三角形;然后利用三角形内切圆半径作为支撑区域确定的依据,对获取的三角形构建尺度不变的特征描述子并进行匹配;最后根据支撑区域主方向信息将三角形匹配转换为点匹配,并利用重复匹配出现的概率去除错误匹配.实验结果表明,该方法不仅对旋转、尺度变化、视角变化、JPEG压缩等图像变化具有鲁棒性,而且匹配的特征点数量多、匹配准确率较高. In this paper, we propose a scale-invariant feature descriptor under triangular combination constraint to overcome the issues of less number of the matched points and low matching accuracy for point descriptor. First,three feature points under given geometric constraints are combined into a triangle. Then, using the radius of the inscribed circle of the obtained triangle as the support region size, a scale-invariant descriptor for the triangle isthus created and the matching is made subsequently. Finally, the point correspondences are obtained by the computedmain direction of the support region, and mismatches are eliminated by retaining the most repeated pointmatch. The experimental results show that this method is not only robust to various image transforms, such as rotation,viewpoint change and JPEG compression, but also increases the number of the matched points with high accuracy.
作者 王志衡 张红亚 刘红敏 王静 Wang Zhiheng;Zhang Hongya;Liu Hongmin;Wang Jing(College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第2期244-253,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61572173 61472119 61472373 61401150) 河南理工大学创新型科研团队资助计划(T2014-3) 河南理工大学杰出青年基金(J2013-2)
关键词 特征匹配 点匹配 三角组合 三角形匹配 feature matching point matching triangular combination triangle matching
  • 相关文献

参考文献4

二级参考文献43

  • 1赵训坡,胡占义.一种实用的基于证据积累的图像曲线粗匹配方法[J].计算机学报,2005,28(3):357-367. 被引量:11
  • 2袁贞明,吴飞,庄越挺.基于视觉特征的多传感器图像配准[J].中国图象图形学报,2005,10(6):767-772. 被引量:4
  • 3Harris C, Stephens M. A combined corner and edge detector [C] //Proceedings of the Alvey Vision Conference, Manchester, 1988:147-151.
  • 4Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors [J]. International Journal of Computer Vision, 2004, 60(1): 63 86.
  • 5Yi S, Labate D, Easley G R, et al. A shearlet approach to edge analysis and detection [J]. IEEE Transactions on Image Processing, 2009, 18(5): 929-941.
  • 6Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features [C] // Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005:1458-1465.
  • 7Bhowmick P, Pradhan R K, Bhattacharya B B. Approximate matching of digital point sets using a novel angular tree [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(5): 769-782.
  • 8Bai X, Sapiro G. Geodesic matting: a framework for fast interactive image and video segmentation and matting [J]. International Journal of Computer Vision, 2009, 82(2); 113- 132.
  • 9Lhuillier M, Quan L. Match propagation for image-based modeling and rendering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(8) : 1140-1146.
  • 10Kostliva J, Cech J, Sara R. Feasibility boundary in dense and semi-dense stereo matching [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, 2007:1-8.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部