期刊文献+

仿射变换下基于凸包和多尺度积分特征的形状匹配方法 被引量:8

Shape Matching Method Based on Convex Hull and Multiscale Integral Features under Affine Transformation
下载PDF
导出
摘要 针对在仿射变换下的形状匹配问题,提出基于凸包的特征点提取方法、基于各向异性高斯核的多尺度积分特征和基于两者的匹配方法.首先提取形状的凸包,根据最大面积原则对凸包相邻顶点之间的曲线进行演化,获取的点和凸包顶点形成仿射不变的特征点;其次对特征点按顺序编组,根据特征点之间的仿射变换关系构造多尺度积分特征向量;最后使用动态规划算法计算形状之间的相似度.实验结果表明,该方法对局部形变和噪声敏感度小,并适用于复杂形状的匹配.此外,特征点提取方法和多尺度积分特征也可与其他方法结合进行形状分析. Feature point extraction method based on convex hull, multiscale feature based on anisotropic Gaussian kernel and matching method based on them are proposed to solve the shape matching problem under affine transformation. Firstly, the convex hull of the shape is extracted. The curve segments between the adjacent vertices of the convex hull are evolved by maximizing the area of the triangle formed by the adjacent vertices and the points of the segment. The affine invariant features consist of the vertices of the convex hull and the points obtained by the evolution. Secondly, the feature points are grouped in order and the multiscale integral feature vectors are constructed according to the affine relationship between them. Finally, thedynamic programming is used to measure the similarity of the shapes. Experiments show that our method isnot sensitive to the local noises and deformations and is suitable for the matching of complicate shapes.Moreover, the feature point extraction method and the multiscale feature can also be combined with other methods to analysis of shapes.
作者 蔡慧英 朱枫 Cai Huiying;Zhu Feng(Optoelectronic Information Technology Laboratory, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016;University of Chinese Academy of Sciences, Beijing 100049;Key Laboratory of Optical-Electronics Information Processing, Chinese Academy of Sciences, Shenyang 110016;Key Laboratory of Image Understanding and Computer Vision Liaoning Province, Shenyang 110016)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第2期269-278,共10页 Journal of Computer-Aided Design & Computer Graphics
关键词 凸包 多尺度积分特征 各向异性高斯核 仿射变换 形状匹配 convex hull multiscale integral feature anisotropic Gaussian kernel affine transformation shape matching
  • 相关文献

参考文献2

二级参考文献35

  • 1Chan T,Vese L.Active contours without edges[J].IEEE Trans on Image Processing,2001,10(2):266-277.
  • 2Chunming Li,Chenyang Xu,Changfeng Gui,Martin D Fox.Level set evolution without re-initialization:A new variation formulation[A].Proc IEEE Conf Computer Vision and Pattern Recognition[C].Piscataway,NJ:IEEE Computer Society,2005.430-436.
  • 3Chunming Li,Chiu-Yen Kao,John C Gore,Zhaohua Ding.Implicit active contours driven by local binary fitting energy[A].Proc IEEE Conf Computer Vision and Pattern Recognition[C].Piscataway,NJ:IEEE Computer Society,2007.1-7.
  • 4Chunming Li,Chiu-Yen Kao,John C Gore,Zhaohua Ding.Minimization of region-scalable fitting energy for image segmentation[J].IEEE Trans Image Processing,2008,17(10):1940-1949.
  • 5Chunming Li,Rui Huang,Zhaohua Ding,Chris Gatenby,Dimitris Metaxas,John Gore.A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneit[A].Proc Int Conf Medical Image Computing and Computer Assisted Intervention[C].Berlin:Springer-Verlag,2008.1083-1091.
  • 6A Herbulot,S Jehan-Besson,M Barlaud,G Aubert.Shape gradient for image segmentation using information theory[A].Proc IEEE Conf Acoustics,Speech,and Signal Processing[C].New York:IEEE.Inc,2004.Ⅲ.21-24.
  • 7Junmo Kim,Fisher J W,Yezzi A,Cetin M,Willsky A S.A nonparametric methods for image segmentation using information theory and curve evolution[J].IEEE.Trans on Image Processing,2005,14(10):1486-1502.
  • 8Gilles Aubert,Michel Barland,Olivier Faugeras,Stéphanie Jehan-Besson.Image segmentation using active contours:Calculus of variations or shape gradients[J] SIAM Journal of Applied Mathematics,2003,63(6):2128-2154.
  • 9S Jehan-Besson,M Barland,G Aubert,O Faugeras.Shape gradients for histogram segmentation using active contours[A].Proceedings of the Ninth IEEE International Conference on Computer Vision[C].Piscataway,NJ:IEEE.Computer Society,2003.408-415.
  • 10Tony Chan,Selim Esedoglu,Kangyu Ni.Histogram based segmentation using wasserstein distance[A].Scale Space and Variational Methods in Computer Vision[C].Berlin:SpringerVerlag,2007.697-708.

共引文献8

同被引文献69

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部