摘要
为了解决传统层次分析法(AHP)无法对信任值进行快速准确计算的缺点,构建了客户和供应商的信任值评估模型,并引入神经网络的相关方法对客户和供应商访问控制中的信任值进行计算。仿真结果表明,相对于AHP评价法,BP神经网络具有较高的计算正确率和较短的计算时间,可以大大提高云计算的安全性。
In order to overcome the shortcoming that the traditional analytic hierarchy process(AHP) can′t calculate the trust value quickly and accurately,the trust value evaluation model of the client and supplier was constructed,and the related method based on neural network was introduced to calculate the trust value of the client and supplier access control. The simula?tion results show that,in comparison with the AHP evaluation method,the method based on BP neural network has higher calcu?lation accuracy and shorter calculation time,and can improve the security of the cloud computing greatly.
作者
于烨
郭治成
王连忠
贾博
刘思尧
刘俊
YU Ye;GUO Zhicheng;WANG Lianzhong;JIA Bo;LIU Siyao;LIU Jun(Information and Communication Company,State Grid Ningxia Electric Power Company,Yinchuan 750001,China;Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《现代电子技术》
北大核心
2017年第3期62-64,70,共4页
Modern Electronics Technique
基金
基金项目:"国网宁夏电力公司信息通信系统发展研究"(5229XT140045)的研究成果
关键词
BP神经网络
云计算
访问控制
信任阈值
BP neural network
cloud computing
access control
trust threshold