期刊文献+

一种基于多正则化参数的矩阵分解推荐算法 被引量:16

Recommender algorithm based on matrix factorization with multiple regularization parameters
下载PDF
导出
摘要 基于梯度下降矩阵分解模型的协同过滤推荐算法需要利用正则化技术对问题加以约束。损失函数中的正则化参数能够提高模型的预测精度,防止训练过拟合,并可以在二者间调节,使二者平衡。提出了一种多正则化参数的方法,根据用户的活跃度或者项目的流行度确定正则化参数的值,能在不同评分数量的用户或者项目上防止训练过拟合,同时可以得到更好的预测精度。实验结果验证了算法的正确性和有效性。 Regularization technique is needed for the collaborative filtering recommendation algorithm based on the gradientdescent matrix factorization to restrict the problems.Regularization parameter used in the loss function can control thetrade-off between prediction accuracy of the model and overfitting avoidance to the training.A method of multiple regularizationparameters is proposed.It can obtain the regularization parameters according to the user activity and item popularity,avoid the overfitting in the users and items with different numbers,and get better prediction accuracy.The experimentresults show that this method is correct and feasible.
作者 张航 叶东毅 ZHANG Hang;YE Dongyi(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第3期74-79,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61473089)
关键词 推荐系统 协同过滤 概率矩阵分解 正则化参数 recommender system collaborative filtering probabilistic matrix factorization regularization parameter
  • 相关文献

参考文献3

二级参考文献37

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献853

同被引文献122

引证文献16

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部